Skip to main content
Log in

Predicting upslope expansion of sub-alpine forest in the Makalu Barun National Park, Eastern Nepal, with a hybrid cartographic model

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

The natural upper boundary of a forest (forest line) in mountain environments is an indicator of climate conditions. An increase in global average temperatures has resulted in an upward advance of the forest line. This advance may result in fragmentation of the alpine ecosystem and a loss of biodiversity. Therefore, it is important to identify potential areas where current forests can advance under scenarios of future climate change. I used expert knowledge and cartographic modeling to create a hybrid cartographic model considering five topographic variables to predict areas where forest line can expand in the future. The prediction accuracy of the model is around 82%. The model is able to predict areas above the current forest line that are suitable or unsuitable for future forest advance. Further inclusion of high-resolution satellite imagery and digital elevation models, as well as field-based information into the model can help to improve the model accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bader MY, Ruijten JJ (2008) A topography-based model of forest cover at the alpine tree line in the tropical Andes. J Biogeogr 35(4):711–723

    Article  Google Scholar 

  • Boulangeat I, Philippe P, Abdulhak S, Douzet R, Garraud L, Lavergne S, Lavorel S, Van Es J, Vittoz P, Thuiller W (2012) Improving plant functional groups for dynamic models of biodiversity: at the crossroads between functional and community ecology. Glob Change Biol 18(11):3464–3475

    Article  Google Scholar 

  • Brown DG (1994) Predicting vegetation types at treeline using topography and biophysical disturbance variables. J Veg Sci 5(5):641–656

    Article  Google Scholar 

  • Butler DR, Malanson GP, Walsh SJ, Fagre DB (2007) Influences of geomorphology and geology on alpine treeline in the American West—more important than climatic influences? Phys Geogr 28(5):434–450

    Article  Google Scholar 

  • Byers AC (1996) Historical and contemporary human disturbance in the Upper Barun Valley, Makalu-Barun National Park and Conservation Area, East Nepal. Mt Res Dev 16(3):235–247

    Article  Google Scholar 

  • Carlson BZ, Randin CF, Boulangeat I, Lavergne S, Thuiller W, Choler P (2013) Working toward integrated models of alpine plant distribution. Alp Bot 123(2):41–53

    Article  PubMed  PubMed Central  Google Scholar 

  • Carpenter C, Zomer R (1996) Forest ecology of the Makalu Barun National Park and Conservation Area, Nepal. Mt Res Dev 16(2):135–148

    Article  Google Scholar 

  • Chander G, Markham BL, Helder DL (2009) Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM + , and EO-1 ALI sensors. J Remote Sens Environ 113(5):893–903

    Article  Google Scholar 

  • Chaplin J, Brabyn L (2013) Using remote sensing and GIS to investigate the impacts of tourism on forest cover in the Annapurna Conservation Area, Nepal. Appl Geogr 43:159–168

    Article  Google Scholar 

  • Chhetri PK, Cairns DM (2015) Contemporary and historic population structure of Abies spectabilis at treeline in Barun valley, eastern Nepal Himalaya. J Mt Sci 12(3):558–570

    Article  Google Scholar 

  • Chhetri PK, Cairns DM (2016) Dendroclimatic response of Abies spectabilis at treeline ecotone of Barun Valley, eastern Nepal Himalaya. J For Res 27(5):1163–1170

    Article  Google Scholar 

  • Chhetri PK, Shrestha KB, Cairns DM (2017) Topography and human disturbances are major controlling factor in treeline pattern at Barun and Manang area in the Nepal Himalaya. J Mt Sci 14(1):119–127

    Article  Google Scholar 

  • Colby JD (1991) Topographic normalization in rugged terrain. Photogramm Eng Remote Sens 57(5):531–537

    Google Scholar 

  • Coops NC, Morsdorf F, Schaepman ME, Zimmermann NE (2013) Characterization on an alpine treeline using airborne LIDAR data and physiological modeling. Glob Change Biol 19(12):3808–3821

    Article  Google Scholar 

  • Danzeglocke J (2005) Remote sensing of upper timberline elevation in the Alps on different scales. In: Oluic (ed.) New strategies for European remote sensing. MillPress, Rosterdam

  • Devi N, Hagedorn F, Moiseev P, Bugmann H, Shiyatov S, Mazepa V, Rigling A (2008) Expanding forests and changing growth forms of Siberian larch at the Polar Urals treeline during the 20th century. Glob Change Biol 14(7):1581–1591

    Article  Google Scholar 

  • Eckert S, Kellenberger T, Itten K (2005) Accuracy assessment of automatically derived digital elevation models from ASTER data in mountainous terrain. Int J Remote Sens 26(9):1943–1957

    Article  Google Scholar 

  • Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–697

    Article  Google Scholar 

  • Fang KY, Wilmking M, Davi N, Zhou FF, Liu CZ (2014) An ensemble weighting approach for dendroclimatology: drought Reconstructions for the Northeastern Tibetan Plateau. PLoS ONE 9(1):e86689

    Article  PubMed  PubMed Central  Google Scholar 

  • Forkuor G, Maathuis B (2012) Comparison of SRTM and ASTER Derived Digital Elevation Models over Two Regions in Ghana-Implications for Hydrological and Environmental Modeling. Studies on Environmental and Applied Geomorphology, InTech, pp 219–240

    Google Scholar 

  • Forrest JL, Wikramanayake E, Shrestha R, Areendran G, Gyeltshen K, Maheshwari A, Thapa K (2012) Conservation and climate change: assessing the vulnerability of snow leopard habitat to treeline shift in the Himalaya. Biol Cons 150(1):129–135

    Article  Google Scholar 

  • Gaire NP, Koirala M, Bhuju DR, Borgaonkar HP (2014) Treeline dynamics with climate change at the central Nepal Himalaya. Clim Past 10(4):1277–1290

    Article  Google Scholar 

  • Harsch MA, HilleRisLambers J (2016) Climate warming and seasonal precipitation change interact to limit species distribution shifts across Western North America. PLoS ONE 11(7):e0159184

    Article  PubMed  PubMed Central  Google Scholar 

  • Hirzel AH, Lay GL, Helfer V, Randin C, Guisan A (2006) Evaluating the ability of habitat suitability models to predict species presences. Ecol Modeling 199(2):142–152

    Article  Google Scholar 

  • Jenness J (2013) DEM Surface Tools. Jenness Enterprises. Available at: http://www.jennessent.com/arcgis/surface_area.htm

  • Kajimoto T, Daimaru H, Okamoto T, Otani T, Onodera H (2004) Effects of snow avalanche disturbance on regeneration of subalpine Abies mariesii forest, northern Japan. Arct Antarct Alp Res 36(4):436–445

    Article  Google Scholar 

  • Kattel DB, Yao TD, Yang K, Tian L, Yang G, Joswiak D (2013) Temperature lapse rate in complex mountain terrain on the southern slope of the central Himalayas. Theoret Appl Climatol 113(3–4):671–682

    Article  Google Scholar 

  • Kearney M, Porter W (2009) Mechanistic niche modelling: combining physiological and spatial data to predict species ranges. Ecol Lett 12(4):334–350

    Article  PubMed  Google Scholar 

  • Körner C (1998) A re-assessment of high elevation treeline positions and their explanation. Oecologia 115(4):445–459

    Article  PubMed  Google Scholar 

  • Körner C (2012) Alpine treelines: functional ecology of the global high elevation tree limits. Springer, Basel

    Book  Google Scholar 

  • Lauver CL, Busby WH, Whistler JL (2002) Testing a GIS model of habitat suitability for a declining grassland bird. Environ Manage 30(1):88–97

    Article  PubMed  Google Scholar 

  • Malanson GP (2001) Complex responses to global change at alpine treeline. Phys Geogr 22(4):333–342

    Google Scholar 

  • McFeeters SK (1996) The use of Normalized Difference Water Index (NDWI) in the delineation of open water features. Int J Remote Sens 17(7):1425–1432

    Article  Google Scholar 

  • McFeeters SK (2013) Using the Normalized Difference Water Index (NDWI) within a geographic information system to detect swimming pools for mosquito abatement: a practical approach. Remote Sens. 5(7):3544–3561

    Article  Google Scholar 

  • Panigrahy S, Anitha D, Kimothi MM, Singh SP (2010) Timberline change detection using topographic map and satellite imagery. Trop Ecol 51(1):87–91

    Google Scholar 

  • Paulsen J, Körner C (2001) GIS-analysis of tree-line elevation in the Swiss Alps suggests no exposure effect. J Veg Sci 12(6):817–824

    Article  Google Scholar 

  • Pierce KB Jr, Lookingbill T, Urban D (2005) A simple method for estimating potential relative radiation (PRR) for landscape-scale vegetation analysis. Landscape Ecol 20(2):137–147

    Article  Google Scholar 

  • Randin CF, Vuissoz G, Liston GE, Vittoz P, Guisan A (2009) Introduction of snow and geomorphic disturbance variables into predictive models of alpine plant distribution in the Western Swiss Alps. Arct Antarct Alp Res 41(3):347–361

    Article  Google Scholar 

  • Schickhoff U (2005) The upper timberline in the Himalayas, Hindu Kush and Karakorum: a review of geographical and ecological aspects. Mountain ecosystems. Springer, Berlin Heidelberg, pp 275–354

    Chapter  Google Scholar 

  • Shrestha KB, Hofgaard A, Vandvik V (2015) Recent treeline dynamics are similar between dry and mesic areas of Nepal, central Himalaya. J Plant Ecol 8(4):347–358

    Article  Google Scholar 

  • Singh PC, Panigrayh S, Parihar JS, Dharaiya N (2013) Modeling environmental niche of Himalayan birch and remote sensing based vicarious validation. Trop Ecol 54(3):321–329

    Google Scholar 

  • Vittoz P, Rulence B, Largey T, Frelechoux F (2008) Effects of climate and land-use change on the establishment and growth of Cembran Pine (Pinus cembra L.) over the altitudinal treeline ecotone in the central Swiss Alps. Arct Antarct Alp Res 40(1):225–232

    Article  Google Scholar 

  • Walsh SJ, Kelly NM (1990) Treeline migration and terrain variability: integration of remote sensing digital enhancements and digital elevation models. Pap Proc Appl Geogr Conf 13:293–304

    Google Scholar 

  • Walsh SJ, Butler DR, Brown DG, Bian L (1994) Form and pattern of alpine environments: an integrative approach to spatial analysis and modelling in Glacier National Park, U.S.A. In: Heywood DI, Price MF (eds) Mountain environments and GIS. Taylor and Francis, London, pp 189–216

    Google Scholar 

  • Walsh SJ, Butler DR, Malanson GP, Crews-Meyer KA, Messina JP, Xiao NC (2003) Mapping, modeling, and visualization of the influence of geomorphic processes on the alpine treeline ecotone, Glacier National Park, MT, USA. Geomorphology 53(1–2):129–145

    Article  Google Scholar 

  • Wang WL, Körner C, Zhang ZM, Wu RD, Geng YP, Shi W, Ou XK (2013) No slope exposure effect on alpine treeline position in the three parallel rivers region, SW China. Alp Bot 123(2):87–95

    Article  Google Scholar 

  • Xu JC, Grumbine RE, Shrestha A, Eriksson M, Yang XF, Wang Y, Wilkes A (2009) The melting Himalayas: cascading effects of climate change on water, biodiversity, and livelihoods. Conserv Biol 23(3):520–530

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parveen Kumar Chhetri.

Additional information

The online version is available at http://www.springerlink.com

Corresponding editor: Tao Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chhetri, P.K. Predicting upslope expansion of sub-alpine forest in the Makalu Barun National Park, Eastern Nepal, with a hybrid cartographic model. J. For. Res. 29, 129–137 (2018). https://doi.org/10.1007/s11676-017-0421-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-017-0421-8

Keywords

Navigation