Skip to main content
Log in

A Study on Stress Corrosion Cracking of X70 Pipeline Steel in Carbonate Solution by EIS

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, electrochemical impedance spectroscopy (EIS) simultaneously with the slow strain rate testing were used to investigate the stress corrosion cracking (SCC) behavior of X70 pipeline steel in high pH bicarbonate solution at different applied potentials. Potentiostatic EIS tests were also conducted at certain times to determine the changes associated with the SCC. Circuit models for the cracking were proposed by the use of the potentiostatic EIS measurements at different applied potentials. Finally, the results of the potentiostatic EIS tests and the SSR tests showed the decline of the circuit element resistance by increasing the stress which was related to the cracking. It was also observed that the X70 pipeline steel was most susceptible to SCC at potential of −650 mV versus SCE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. K. Sibradzki and R.C. Newman, Stress-Corrosion Cracking, J. Phys. Chem. Solids, 1987, 48(11), p 1101–1113

    Article  Google Scholar 

  2. H. Xue and Y. Cheng, Passivity and Pitting Corrosion of X80 Pipeline Steel in Carbonate/Bicarbonate Solution Studied by Electrochemical Measurements, J. Mater. Eng. Perform., 2010, 19(9), p 1311–1317

    Article  CAS  Google Scholar 

  3. External Stress Corrosion Cracking of Underground Pipelines, NACE International, October 2003, Item no. 24221

  4. J.T. Bulger, B.T. Lu, and J.L. Luo, Microstructural Effect on Near-Neutral pH Stress Corrosion Cracking Resistance of Pipeline Steels, J. Mater. Sci., 2006, 41(15), p 5001–5005

    Article  CAS  Google Scholar 

  5. L. Zhang, X. Li, C. Du, and Y. Huang, Effect of Applied Potentials on Stress Corrosion Cracking of X70 Pipeline Steel in Alkali Solution, Mater. Des., 2009, 30(6), p 2259–2263

    Article  CAS  Google Scholar 

  6. V.A. Marichev, One General Rule of Corrosion Cracking of High-Strength Steels, Dokl. Akad. Nauk SSSR, 1974, 218(3), p 638–640

    CAS  Google Scholar 

  7. V.A. Marichev, Hydrogen Embrittlement of Construction Materials, Mater. Corros., 1982, 33(1), p 1–14

    Article  CAS  Google Scholar 

  8. V.E. Ignatenko, A.I. Marshakov, V.A. Marichev, Yu.N. Mikhailovskii, and N.A. Petrov, Effect of Cathodic Polarization on the Corrosion Cracking Rate in Pipe Steels, Prot. Met., 2000, 36(2), p 111–117

    Article  CAS  Google Scholar 

  9. B.N. Leis, R.J. Eiber, Stress Corrosion Cracking on Gas Transmission Pipelines: History, Causes, and Mitigation, 1st Int. Business Conference on Onshore Pipelines, Berlin, 1997

  10. C. Zhang and Y.F. Cheng, Synergistic Effects of Hydrogen and Stress on Corrosion of X100 Pipeline Steel in a Near-Neutral pH Solution, J. Mater. Eng. Perform., 2009, 19(9), p 1284–1289

    Article  Google Scholar 

  11. R.N. Parkins and J.A. Beavers, Some Effects of Strain Rate on the Transgranular Stress Corrosion Cracking of Ferritic Steels in Dilute Near-Neutral-pH Solutions, Corrosion., 2003, 59(3), p 258–273

    Article  CAS  Google Scholar 

  12. R.N. Parkins, A Review of Stress Corrosion Cracking in High-Pressure Gas Pipelines, Paper no. 363, Corrosion 2000, NACE, Houston, 2000, Paper no. 363

  13. R.N. Parkins, The Controlling Parameters in Stress Corrosion Cracking, 5th Symposium on Line Pipe Research, November 1974, Arlington, VA, PRCI, 1974, p U-1–U-40

  14. R.R. Fessler, Stress Corrosion Cracking Temperature Effects, 6th Symposium on Line Pipe Research, November 1979, Arlington, VA, PRCI, 1979, p R-1–R-10

  15. J.A. Beavers, C.L. Durr, B.S. Delanty, High-pH SCC: Temperature and Potential Dependence for Cracking in Field Environments, Proceedings of the 3rd International Pipeline Conference, June 1998, New York, NY, ASME, 1998, p 423–437

  16. M.C. Petit, M. Cid, M. Puiggali, and Z. Amor, An Impedance Study of the Passivity Breakdown During Stress Corrosion Cracking Phenomena, Corros. Sci., 1990, 31, p 491–496

    Article  CAS  Google Scholar 

  17. M. Keddam, R. Oltra, J.C. Colson, and A. Desestret, Depassivation of Iron by Straining and by Abrasion: An A.C. Impedance Study, Corros. Sci., 1983, 23(4), p 441–451

    Article  CAS  Google Scholar 

  18. K. Darowicki, J. Orlikowski, and A. Arutunow, Investigations of the Passive Layer Cracking by Means of Dynamic Electrochemical Impedance Spectroscopy, Electrochim. Acta, 2003, 48(28), p 4189–4196

    Article  CAS  Google Scholar 

  19. K. Darowicki, J. Orlikowski, and A. Arutunow, Dynamic Electrochemical Impedance Spectroscopy Measurements of Passive Layer Cracking Under Static Tensile Stresses, J. Solid State Electrochem., 2004, 8(6), p 352–359

    Article  CAS  Google Scholar 

  20. R.W. Bosch, Electrochemical Impedance Spectroscopy for the Detection of Stress Corrosion Cracks in Aqueous Corrosion Systems at Ambient and High Temperature, Corros. Sci., 2005, 47(1), p 125–143

    Article  CAS  Google Scholar 

  21. M. Touzet, M. Puiggali, M. Cid, and D. Desjardins, The Characterization of Damage in SCC by an Electrochemical Impedance and Statistical Study of Multiple Cracking, Corros. Sci., 1994, 36(5), p 815–821

    Article  CAS  Google Scholar 

  22. R. de Levie, Advances in Electrochemistry and Electrochemical Engineering, Vol 6, Wiley, New York, 1967, p 329–398

    Google Scholar 

  23. X. Lou and P.M. Singh, Phase Angle Analysis for Stress Corrosion Cracking of Carbon Steel in Fuel-Grade Ethanol: Experiments and Simulation, Electrochim. Acta, 2011, 56(4), p 1835–1847

    Article  CAS  Google Scholar 

  24. “Slow Strain Rate Test Method for Screening Corrosion-Resistant Alloys for Stress Corrosion Cracking in Sour Oilfield Service”, TM0198-2004, NACE Standard, Item No. 21232

  25. R.N. Parkins, C.S. O’Dell, and R.R. Fessler, Factors Affecting the Potential of Galvanostatically Polarised Pipeline Steel in Relation to SCC in CO3 2−-HCO3− Solutions, Corros. Sci., 1984, 24(4), p 343–374

    Article  CAS  Google Scholar 

  26. R.N. Parkins and S. Zhou, The Stress Corrosion Cracking of C-Mn Steel in CO3 2−-HCO3− Solutions. II: Electrochemical and Other Data, Corros. Sci., 1997, 39(1), p 175–191

    Article  CAS  Google Scholar 

  27. H. Keiser, K.D. Beccu, and M.A. Gutjahr, Abschätzung der Porenstruktur Poröser Elektroden aus Impedanzmessungen, Electrochim. Acta, 1976, 21(8), p 539–543 (in German)

    Article  CAS  Google Scholar 

  28. E. Barsoukov and J.R. Macdonald, Impedance Spectroscopy Theory, Experiment and Applications, Wiley-Interscience, Hoboken, NJ, 2005

    Book  Google Scholar 

  29. A.A. Oskuie, T. Shahrabi, A. Shahriari, and E. Saebnoori, Electrochemical Impedance Spectroscopy Analysis of X70 Pipeline steel Stress Corrosion Cracking in High pH Carbonate Solution, Corros. Sci., 2012, 61, p 111–122

    Article  CAS  Google Scholar 

  30. W.R. Osório, C. Brito, L.C. Peixoto, and A. Garcia, Electrochemical Behavior of Zn-rich Zn-Cu Peritectic Alloys Affected by Macrosegregation and Microstructural Array, Electrochim. Acta, 2012, 76, p 218–228

    Article  Google Scholar 

  31. H.L. Li, K.W. Gao, L.J. Qiao, Y.B. Wang, and W.Y. Chu, Strength Effect in Stress Corrosion Cracking of High-Strength Steel in Aqueous Solution, Corrosion, 2001, 57(4), p 295–299

    Article  CAS  Google Scholar 

  32. M.C. Fatah, M.C. Ismail, B. Ari-Wahjoedi, Electrochemical Behavior of X52 Steel in a CO2 Environment in the Presence of Acetate and Sulfide, J. Mater. Eng. Perform, 2012, doi:10.1007/s11665-012-0211-6

  33. W.R. Osorio, J.E. Spinelli, C.R.M. Afonso, L.C. Peixoto, and A. Garcia, Microstructure, Corrosion Behaviour and Microhardness of a Directionally Solidified Sn-Cu Solder Alloy, Electrochim. Acta, 2011, 56, p 8891–8899

    Article  CAS  Google Scholar 

  34. W.R. Osorio, D.J. Moutinho, L.C. Peixoto, I.L. Ferreira, and A. Garcia, Macrosegregation and Microstructure Dendritic Array Affecting the Electrochemical Behaviour of Ternary Al-Cu-Si Alloys, Electrochim. Acta, 2011, 56(24), p 8412–8421

    Article  CAS  Google Scholar 

  35. F.M. Song, Predicting the Mechanisms and Crack Growth Rates of Pipelines Undergoing Stress Corrosion Cracking at High pH, Corros. Sci., 2009, 51(11), p 2657–2674

    Article  CAS  Google Scholar 

  36. R.N. Parkins, E. Belhimer, and W.K. Blanchard, Jr., Stress Corrosion Cracking Characteristics of a Range of Pipeline Steels in Carbonate-Bicarbonate Solution, Corrosion, 1993, 49(12), p 951–966

    Article  CAS  Google Scholar 

  37. D. Hardie and E.A. Charles, Hydrogen Embrittlement of High Strength Pipeline Steels, Corros. Sci., 2006, 48(12), p 4378–4385

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Shahrabi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shahriari, A., Shahrabi, T. & Oskuie, A.A. A Study on Stress Corrosion Cracking of X70 Pipeline Steel in Carbonate Solution by EIS. J. of Materi Eng and Perform 22, 1459–1470 (2013). https://doi.org/10.1007/s11665-012-0418-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-012-0418-6

Keywords

Navigation