Skip to main content

Advertisement

Log in

Transport Properties of Bulk Thermoelectrics—An International Round-Robin Study, Part I: Seebeck Coefficient and Electrical Resistivity

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Recent research and development of high-temperature thermoelectric materials has demonstrated great potential for converting automobile exhaust heat directly into electricity. Thermoelectrics based on classic bismuth telluride have also started to impact the automotive industry by enhancing air-conditioning efficiency and integrated cabin climate control. In addition to engineering challenges of making reliable and efficient devices to withstand thermal and mechanical cycling, the remaining issues in thermoelectric power generation and refrigeration are mostly materials related. The dimensionless figure of merit, ZT, still needs to be improved from the current value of 1.0 to 1.5 to above 2.0 to be competitive with other alternative technologies. In the meantime, the thermoelectric community could greatly benefit from the development of international test standards, improved test methods, and better characterization tools. Internationally, thermoelectrics have been recognized by many countries as a key component for improving energy efficiency. The International Energy Agency (IEA) group under the Implementing Agreement for Advanced Materials for Transportation (AMT) identified thermoelectric materials as an important area in 2009. This paper is part I of the international round-robin testing of transport properties of bulk thermoelectrics. The main foci in part I are the measurement of two electronic transport properties: Seebeck coefficient and electrical resistivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling (London: Infosearch, 1957).

    Google Scholar 

  2. J.C. Peltier, Ann. Chem. LVI, 371 (1834).

    Google Scholar 

  3. H.J. Goldsmid, Electronic Refrigeration (London: Pion Limited, 1986).

    Google Scholar 

  4. D.M. Rowe, eds., CRC Handbook of Thermoelectrics (Boca Raton, FL: CRC, 1995).

    Google Scholar 

  5. G.S. Nolas, J. Sharp, and H.J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments (New York: Springer, 2001).

    Google Scholar 

  6. Jet Propulsion Laboratory Thermoelectric Science and Engineering Web Site, http://www.its.caltech.edu/~jsnyder/thermoelectrics/. Accessed August 20, 2012.

  7. G.A. Slack, CRC Handbook of Thermoelectrics, ed. D.M. Rowe (Boca Raton, FL: CRC, 1995), p. 407.

    Google Scholar 

  8. G.S. Nolas, G.A. Slack, and S.B. Schujman, Semicond. Semimet. 69, 255 (2000).

    Article  Google Scholar 

  9. B.C. Sales, D. Mandrus, and R.K. Williams, Science 272, 1325 (1996).

    Article  CAS  Google Scholar 

  10. B.C. Sales, D.G. Mandrus, and B.C. Chakoumakos, Semicond. Semimet. 70, 1 (2001).

    Article  CAS  Google Scholar 

  11. D.T. Morelli and G.P. Meisner, J. Appl. Phys. 77, 3777 (1995).

    Article  CAS  Google Scholar 

  12. C. Uher, Semicond. Semimet. 69, 139 (2000).

    Article  Google Scholar 

  13. C. Keppens, D. Mandrus, B.C. Sales, B.C. Chakoumakos, P. Dai, R. Coldea, M.B. Maple, D.A. Gajewski, E.J. Freeman, and S. Bennington, Nature 395, 876 (1998).

    Article  CAS  Google Scholar 

  14. V.L. Kuznetsov, L.A. Kuznetsova, A.E. Kaliazin, and D.M. Rowe, J. Appl. Phys. 87, 7871 (2000).

    Article  CAS  Google Scholar 

  15. G.S. Nolas, Thermoelectrics Handbook: Macro- to Nano-Structured Materials, edited by D.M. Rowe (Boca Raton, FL: CRC Press, 2005), pp. 33-1.

  16. W. Jeischko, Metall. Trans. A 1, 3159 (1970).

    Google Scholar 

  17. S.J. Poon, Recent Trends in Thermoelectric Materials Research II, ed. T.M. Tritt, Semiconductors and Semimetals, vol. 70, chap. 2, Treatise Editors, R.K. Willardson and E.R. Weber (New York: Academic Press, 2001), p. 37.

  18. J. Tobola, J. Pierre, S. Kaprzyk, R.V. Skolozdra, and M.A. Kouacou, J. Phys. Condens. Matter 10, 1013 (1998).

    Article  CAS  Google Scholar 

  19. F.G. Aliev, N.B. Brandt, V.V. Moschalkov, V.V. Kozyrkov, R.V. Scolozdra, and A.I. Belogorokhov, Phys. B Condens. Matter 75, 167 (1989).

    Article  CAS  Google Scholar 

  20. S. Ogut and K.M. Rabe, Phys. Rev. B 51, 10443 (1995).

    Article  CAS  Google Scholar 

  21. W.E. Pickett and J.S. Moodera, Phys. Today 54, 39 (2001).

    Article  CAS  Google Scholar 

  22. C. Uher, J. Yang, S. Hu, D.T. Morelli, and G.P. Meisner, Phys. Rev. B 59, 8615 (1999).

    Article  CAS  Google Scholar 

  23. H. Hohl, A.P. Ramirez, C. Goldmann, G. Ernst, B. Wolfing, and E. Bucher, J. Phys. Condens. Matter 11, 1697 (1999).

    Article  CAS  Google Scholar 

  24. S. Sportouch, P. Larson, M. Bastea, P. Brazis, J. Ireland, C.R. Kannenwurf, S.D. Mahanti, C. Uher, and M.G. Kanatzidis, Thermoelectric Materials 1998The Next Generation Materials for Small-Scale Refrigeration and Power Generation Applications, ed. T.M. Tritt, M.G. Kanatzidis, G.D. Mahan, and H.B. Lyon, Jr. (Warrendale, PA: Mater. Res. Soc. Symp. Proc. 545, 1999), p. 421.

  25. S. Bhattacharya, A.L. Pope, R.T. Littleton IV, T.M. Tritt, V. Ponnambalam, Y. Xia, and S.J. Poon, Appl. Phys. Lett. 77, 2476 (2000).

    Article  CAS  Google Scholar 

  26. Y. Xia, S. Bhattacharya, V. Ponnambalam, A.L. Pope, S.J. Poon, and T.M. Tritt, J. Appl. Phys. 88, 1952 (2000).

    Article  CAS  Google Scholar 

  27. Q. Shen, L. Chen, T. Goto, T. Hirai, J. Yang, G.P. Meisner, and C. Uher, Appl. Phys. Lett. 79, 4165 (2001).

    Article  CAS  Google Scholar 

  28. S. Sakurada and N. Shutoh, Appl. Phys. Lett. 86, 2105 (2005).

    Article  Google Scholar 

  29. E. Skrabeck and D.S. Trimmer, CRC Handbook of Thermoelectrics, ed. D.M. Rowe (Boca Raton, FL: CRC, 1995), p. 267.

  30. K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, and M.G. Kanatzidis, Science 303, 818 (2004).

    Article  CAS  Google Scholar 

  31. S. Sportouch, M. Bastea, P. Brazis, J. Ireland, C.R. Kannewurf, C. Uher, and M.G. Kanatzidis, Thermoelectric Materials 1998The Next Generation Materials for Small-Scale Refrigeration and Power Generation Applications, ed. T.M. Tritt, M.G. Kanatzidis, G.D. Mahan, and H.B. Lyon, Jr. (Warrendale, PA: Mater. Res. Soc. Symp. Proc. 545, 1999), p. 123.

  32. E. Quarez, K.F. Hsu, R. Pcionek, N. Frangis, E.K. Polychroniadis, and M.G. Kanatzidis, J. Am. Chem. Soc. 127, 9177 (2005).

    Article  CAS  Google Scholar 

  33. H.W. Mayer, I. Mikhail, and K. Schubert, J. Less-Common Met. 59, 43 (1978).

    Article  CAS  Google Scholar 

  34. T. Caillat, J.-P. Fleurial, and A. Borshchevsky, J. Phys. Chem. Solids 58, 1119 (1997).

    Article  CAS  Google Scholar 

  35. V.L. Kuznetsov and D.M. Rowe, J. Alloys Compd. 372, 103 (2004).

    Article  CAS  Google Scholar 

  36. S.C. Ur, I.H. Kim, and P. Nash, Mater. Lett. 58, 2132 (2004).

    Article  CAS  Google Scholar 

  37. K. Ueno, A. Yamamoto, T. Noguchi, T. Inoue, S. Sodeoka, H. Takazawa, C.H. Lee, and H. Obara, J. Alloys Compd. 385, 254 (2004).

    Article  Google Scholar 

  38. G.J. Snyder, M. Christensen, E. Nishibori, T. Caillat, and B.B. Iversen, Nat. Mater. 3, 458 (2004).

    Article  CAS  Google Scholar 

  39. M. Tsutsui, L.T. Zhang, K. Ito, and M. Yamaguchi, Intermetallics 12, 809 (2004).

    Article  CAS  Google Scholar 

  40. F. Cargnoni, E. Nishibori, P. Rabiller, L. Bertini, G.J. Snyder, M. Christensen, and B.B. Inversen, Chem. Eur. J. 20, 3861 (2004).

    Article  Google Scholar 

  41. S.G. Kim, I.I. Mazin, and D.J. Singh, Phys. Rev. B 57, 6199 (1998).

    Article  CAS  Google Scholar 

  42. J. Nylen, M. Andersson, S. Lidin, and U. Haeussermann, J. Am. Chem. Soc. 126, 16306 (2004).

    Article  CAS  Google Scholar 

  43. V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A.Y. Samunin, and M.V. Vedernikov, Phys. Rev. B 74, 045207 (2006).

    Article  Google Scholar 

  44. M. Fukano, T. Iida, K. Makino, M. Akasaka, Y. Oguni, and Y. Takanashi, Thermoelectric Power Generation, ed. T. P. Hogan, J. Yang, R. Funahashi and T. Tritt (MRS Proceedings Vol. 1044, 2007), U06-13.

  45. N.L. Okamoto, T. Koyama, K. Kishida, K. Tanaka, and H. Inui, Acta Mater. 57, 5036 (2009).

    Article  CAS  Google Scholar 

  46. I. Terasaki, Y. Sasago, and K. Uchinokura, Phys. Rev. B 56, R12685 (1997).

    Article  CAS  Google Scholar 

  47. R. Funahashi, I. Matsubara, H. Ikuta, T. Takeuchi, U. Mizutani, and S. Sodeoka, Jpn. J. Appl. Phys. Pt. 2, L1127 (2000).

    Article  Google Scholar 

  48. A.C. Masset, C. Michel, A. Maignan, M. Hervieu, O. Toulemonde, F. Studer, B. Raveau, and J. Hejtmanek, Phys. Rev. B 62, 166 (2000).

    Article  CAS  Google Scholar 

  49. Y. Miyazaki, K. Kudo, M. Akoshima, Y. Ono, Y. Koike, and T. Kajitani, Jpn. J. Appl. Phys. Pt. 2, L531 (2000).

    Article  Google Scholar 

  50. A. Satake, H. Tanaka, T. Ohkawa, T. Fujii, and I. Terasaki, J. Appl. Phys. 96, 931 (2004).

    Article  CAS  Google Scholar 

  51. M. Shikano and R. Funahashi, Appl. Phys. Lett. 82, 1851 (2003).

    Article  CAS  Google Scholar 

  52. I. Matsubara, R. Funahashi, T. Takeuchi, S. Sodeoka, T. Shimizu, and K. Ueno, Appl. Phys. Lett. 78, 362 (2001).

    Article  Google Scholar 

  53. E. Muller, C. Stiewe, D.M. Rowe, and S.G.K. Williams, CRC Thermoelectric Handbook, 2nd ed., Chapter 26 (Boca Raton: CRC, 2006), pp. 1–3.

  54. NIST SRM 3451, Low Temperature Seebeck Coefficient Standard (10 K to 390 K) (2011).

  55. N.D. Lowhorn, W. Wong-Ng, Z.Q. Lu, J. Martin, M.L. Green, E.L. Thomas, J.E. Bonevich, N.R. Dilley, and J. Sharp, J. Mater. Res. 26, 1983–1992 (2011).

    Article  CAS  Google Scholar 

  56. E. Velmre, Proc. Estonian Acad. Sci. Eng. 13, 276 (2007).

    Google Scholar 

  57. T.J. Seebeck, Aus den Jahren 1822 und 1823, pp. 265–373 (1825). Extracts from four lectures delivered at the Academy of Sciences in Berlin on August 16 (1821), October 18 and 25 (1821), and February 11 (1822).

  58. J. Martin, T. Tritt, and C. Uher, J. Appl. Phys. 108, 121101 (2010).

    Article  Google Scholar 

  59. S. Iwanaga, E.S. Toberer, A. LaLonde, and G.J. Synder, Rev. Sci. Instrum. 82, 1–6 (2011).

    Article  Google Scholar 

  60. M.A. Logan, Bell Syst. Tech. J. 40, 885 (1960).

    Google Scholar 

  61. Z. Zhou and C. Uher, Rev. Sci. Instrum. 76, 023901 (2005).

    Article  Google Scholar 

  62. L.J. van der Pauw, Philips Res. Rep. 13, 1–9 (1958).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsin Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Porter, W.D., Böttner, H. et al. Transport Properties of Bulk Thermoelectrics—An International Round-Robin Study, Part I: Seebeck Coefficient and Electrical Resistivity. J. Electron. Mater. 42, 654–664 (2013). https://doi.org/10.1007/s11664-012-2396-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-2396-8

Keywords

Navigation