Skip to main content
Log in

Thermoelectric Properties of Sb-Doped Mg2Si0.3Sn0.7

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Mg2(Si0.3Sn0.7)1−y Sb y (0 ≤ y ≤ 0.04) solid solutions were prepared by a two-step solid-state reaction method combined with the spark plasma sintering technique. Investigations indicate that the Sb doping amount has a significant impact on the thermoelectric properties of Mg2(Si0.3Sn0.7)1−y Sb y compounds. As the Sb fraction y increases, the electron concentration and electrical conductivity of Mg2(Si0.3Sn0.7)1−y Sb y first increase and then decrease, and both reach their highest value at y = 0.025. The sample with y = 0.025, possessing the highest electrical conductivity and one of the higher Seebeck coefficient values among all the samples, has the highest power factor, being 3.45 mW m−1 K−2 to 3.69 mW m−1 K−2 in the temperature range of 300 K to 660 K. Meanwhile, Sb doping can significantly reduce the lattice thermal conductivity (κ ph) of Mg2(Si0.3Sn0.7)1−y Sb y due to increased point defect scattering, and κ ph for Sb-doped samples is 10% to 20% lower than that of the nondoped sample for 300 K < T < 400 K. Mg2(Si0.3Sn0.7)0.975Sb0.025 possesses the highest power factor and one of the lower κ ph values among all the samples, and reaches the highest ZT value: 1.0 at 640 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.N. Nikitin, V.G. Bazanov, and V.I. Tarasov, Sov. Phys. Solid State 12, 2648 (1962).

    Google Scholar 

  2. R.J. Labotz, D.R. Mason, and D.F. O’Kanne, J. Electrochem. Soc. 2, 127 (1963).

    Article  Google Scholar 

  3. E.N. Nikitin, E.N. Tkalenko, V.K. Zaitsev, A.I. Zaslavskij, and A.K. Kuznetsov, Izvestia Akad. Nauk. SSSR, Neorg. Mater. 4, 1902 (1968).

    CAS  Google Scholar 

  4. V.K. Zaitsev, M.I. Fedorov, I.S. Eremin, and E.A. Gurieva, Thermoelectrics Handbook: Micro to Nano, Chap. 29, ed. by D.M. Rowe (New York: Taylor & Francis, 2005).

  5. V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A.Yu. Samunin, and M.V. Vedernikov, Phys. Rev. B 74, 045207 (2006).

    Article  Google Scholar 

  6. Y. Isoda, T. Nagai, H. Fujiu, Y. Imai, and Y. Shinohara, Proc. of the 25th Int. Conf. on Thermoelectrics (2006), p. 406.

  7. Q. Zhang, T.J. Zhu, A.J. Zhou, H. Yin, and X.B. Zhao, Phys. Scripta T129, 123 (2007).

    Article  CAS  Google Scholar 

  8. Q. Zhang, J. He, T.J. Zhu, S.N. Zhang, X.B. Zhao, and T.M. Tritt, Appl. Phys. Lett. 93, 102109 (2008).

    Article  Google Scholar 

  9. Q. Zhang, H. Yin, X.B. Zhao, J. He, X.H. Ji, T.J. Zhu, and T.M. Tritt, Phys. Stat. Sol. (a), 205, 1657 (2008).

    Google Scholar 

  10. W. Liu, X.F. Tang, and J. Sharp, J. Phys. D Appl. Phys. 43, 085406 (2010).

    Article  Google Scholar 

  11. K.A. Bolshakov, N.A. Bulonkov, L.N. Rastorguev, Y.S. Uman-skii, and M.S. Tsirlin, Russ. J. Inorg. Chem. 8, 2710 (1963).

    CAS  Google Scholar 

  12. N.A. Bulyaev, V.V. Saharov, and O. Sh. Goggishuili, Inorg. Mater. 6, 1744 (1970).

    Google Scholar 

  13. G.S. Nolas, D. Wang, and X.N. Lin, Phys. Status Solidi (RRL) 1, 223 (2007).

  14. G.S. Nolas, D. Wang, and M. Beekman, Phys. Rev. B 76, 235204 (2007).

    Article  Google Scholar 

  15. J. Tobala, S. Kaprzyk, and H. Scherrer, J. Electron. Mater. doi:10.1007/s11664-009-1000-3.

  16. J. Tani and H. Kido, Intermetallics 16, 418 (2008).

    Article  CAS  Google Scholar 

  17. C.F. Gallo, R.C. Miller, P.H. Sutter, and R.W. Ure Jr., J. Appl. Phys. 33, 3144 (1962).

    Article  CAS  Google Scholar 

  18. H.R. Shanks, P.D. Maycock, P.H. Sidles, and G.C. Danielson, Phys. Rev. 130, 1743 (1963).

    Article  CAS  Google Scholar 

  19. H.J. Goldsmid, E.H. Volckmann, and J.W. Sharp, Proc. of the 17th Int. Conf. on Thermoelectrics (1998), p. 186.

  20. G.J. Snyder and T.S. Ursell, Phys. Rev. Lett. 91, 148301 (2003).

    Article  Google Scholar 

  21. Y. Isoda, T. Nagai, H. Fujiu, Y. Imai, and Y. Shinohara, Proc. of the 26th Int. Conf. on Thermoelectrics (2007), p. 251.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinfeng Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W., Zhang, Q., Tang, X. et al. Thermoelectric Properties of Sb-Doped Mg2Si0.3Sn0.7 . J. Electron. Mater. 40, 1062–1066 (2011). https://doi.org/10.1007/s11664-011-1541-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-011-1541-0

Keywords

Navigation