Skip to main content
Log in

Cathodic deoxygenation of the alpha case on titanium and alloys in molten calcium chloride

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The oxygen-enriched alpha case on titanium and alloys was successfully deoxygenated to satisfactory levels by electrolysis in molten CaCl2, in which the cathode was made from the metal to be refined. The oxygen distribution in the metal before and after electrolysis was characterized by microhardness tests, scanning electron microscopy (SEM), and energy-dispersive X-ray (EDX). The electrolysis has been carried out at voltages sufficiently below that for the decomposition of CaCl2, and the results obtained suggest that the alpha case deoxygenation follows a simple oxygen ionization mechanism in which the oxygen in the metal is simply ionized at the cathode/electrolyte interface, dissolves in the molten salt, and then discharges at the anode. It is shown that by applying the electrochemical method, the alpha cases on both commercially pure titanium (CP Ti) and the Ti-6Al-4V alloy can be effectively deoxygenated. In particular, due to the removal of oxygen, the original alpha case (single phase) on the Ti-6Al-4V alloy has been converted back to the two-phase microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Titanium Science and Technology, R.I. Jaffee and H.M. Burte, eds., Plenum Press, New York, NY, 1973.

    Google Scholar 

  2. A.D. McQuillan and M.K. McQuillan: Titanium, Butterworths Scientific Publications, London, 1956.

    Google Scholar 

  3. CRC Hand Book of Chemistry and Physics, 77th ed., D.R. Lide, ed., CRC Press, Boca Raton, FL, 1996.

    Google Scholar 

  4. Handbook of Extractive Metallurgy, F. Habashi, ed., Wiley-VCH, Weinheim, 1997, vol. II, pp. 1129–80.

    Google Scholar 

  5. G.Z. Chen, D.J. Fray, and T.W. Farthing: Nature, 2000, vol. 407, pp. 361–64.

    Article  CAS  Google Scholar 

  6. HSC Chemistry for Windows, Outokumpu Research, Pori, Finland, 1994.

  7. Binary Alloy Phase Diagrams, T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, eds., 2nd ed., ASM INTERNATIONAL, Materials Park, OH, 1990, vol. 3, pp. 2924–27.

    Google Scholar 

  8. R.W. Evans, R.J. Hull, and B. Wilshire: J. Mater. Proc. Technol., 1996, vol. 56, pp. 492–501.

    Article  Google Scholar 

  9. U.S. Patent 5,022,935, RMI Titanium, Niles, OH, 1991.

  10. T.H. Okabe, T. Oishi, and K. Ono: J. Alloys Compounds, 1992, vol. 184, pp. 43–56.

    Article  CAS  Google Scholar 

  11. T.H. Okabe, M. Nakamura, T. Oishi, and K. Ono: Metall. Trans. B, 1993, vol. 24, pp. 449–55.

    Google Scholar 

  12. T.H. Okabe, T.N. Deura, T. Oishi, K. Ono, and D.R. Sadoway: J. Alloys Compounds, 1996, vol. 237, pp. 150–54.

    Article  CAS  Google Scholar 

  13. K. Hirota, T.H. Okabe, F. Saito, Y. Waseda, and K.T. Jacob: J. Alloys Compounds, 1999, vol. 282, pp. 101–08.

    Article  CAS  Google Scholar 

  14. R.G. Ward and T.P. Hoar: J. Inst. Met., 1961–62, vol. 90, pp. 6–12.

    CAS  Google Scholar 

  15. S. Boghosian, A. Godo, H. Mediaas, W. Ravlo, and T. Ostvold: Acta Chem. Scand. 1991, vol. 45, pp. 145–57.

    Article  CAS  Google Scholar 

  16. E.M. Levin and H.F. McMurdie: Phase Diagrams for Ceramists, 1975 Suppl., American Ceramic Society, Columbus, OH, 1975, pp. 394.

    Google Scholar 

  17. G.Z. Chen and D.J. Fray: J. Appl. Electrochem., 2001, vol. 31, pp. 155–64.

    Article  CAS  Google Scholar 

  18. Binary Alloy Phase Diagrams, T.B. Massalski, ed., ASM INTERNATIONAL, The Materials Information Society, Materials Park, OH, 1990 Ca-Cu, vol. 1, p. 907; Cu-Ba, vol. 1, p. 573; and O-Cu, vol. 2, p. 1447.

    Google Scholar 

  19. A.E. Jenkins: J. Inst. Met., 1953–54, vol. 82, p. 213.

    Google Scholar 

  20. Z.M. Turovtseva and L.L. Kunin: Analysis of Gases in Metals, Consultants Bureau, New York, NY, 1961, (translation by J. Thompson).

    Google Scholar 

  21. Wilson and Wilson’s Comprehensive Analytical Chemistry, G. Svehla, ed., Elsevier, Oxford, United Kingdom, 1975, vol. 3.

    Google Scholar 

  22. P. Lacombe: in Titanium and Titanium Alloys—Scientific and Technological Aspects, J.C. Williams and A.F. Belov, eds., Plenum Press, New York, NY, 1982, vol. 2, p. 1045.

    Google Scholar 

  23. Materials Properties Handbook: Titanium Alloys, R. Boyer, G. Welsch, and E.W. Collings, eds., ASM INTERNATIONAL, Materials Park, OH, 1994, p. 149.

    Google Scholar 

  24. H. O’Neill: Hardness Measurement of Metals and Alloys, Chapman and Hall Ltd, London, 1967, p. 124.

    Google Scholar 

  25. S. Abkowitz, J.J. Burke, and R.H. Hiltz, Jr.: Titanium in Industry—Technology of Structural Titanium, D. Van Nostrand Company, Inc., London, 1995, pp. 40–42.

    Google Scholar 

  26. M.E. Sibert, Q.H. McKenna, M.A. Steinberg, and E. Wainer: J. Electrochem. Soc., 1955, vol. 102, p. 252.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, G.Z., Fray, D.J. & Farthing, T.W. Cathodic deoxygenation of the alpha case on titanium and alloys in molten calcium chloride. Metall Mater Trans B 32, 1041–1052 (2001). https://doi.org/10.1007/s11663-001-0093-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-001-0093-8

Keywords

Navigation