Skip to main content
Log in

Creep deformation characteristics of tin and tin-based electronic solder alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Creep deformation characteristics of pure tin, and Sn-3.5Ag and Sn-5Sb electronic solder alloys, have been studied at various temperatures between ambient and 473 K (homologous temperature 0.58 to 0.85). Power-law relationships between strain rate and stress were observed at most of the temperatures. The stress exponent (n=7.6, 5.0, and 5.0) and activation energy (Q c =60.3, 60.7, and 44.7 kJ/mol) values were obtained in the case of tin, Sn-3.5Ag, and Sn-5Sb respectively. Based on n and Q c values, it is suggested that the rate controlling creep-deformation mechanism is dislocation climb controlled by lattice diffusion in pure tin and Sn-3.5Ag alloy, and viscous glide controlled by pipe diffusion in Sn-5Sb alloy. The results on Sn-3.5Ag bulk material are compared with the initial results on solder bump arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.T. Vianco and D.R. Frear: J. Met., 1993, vol. 45, pp. 14–19.

    CAS  Google Scholar 

  2. L.E. Felton, C.H. Taeder, and D.B. Knorr: J. Met., 1993, vol. 45, pp. 28–32.

    CAS  Google Scholar 

  3. K.L. Murty, H. Yang, P. Deane, and P. Magill: EEP-Vol. 19-1, Advanced Electronic Packaging, ASME, Philadelphia, PA, 1997, pp. 1221–31.

    Google Scholar 

  4. R.N. Wild: Report Nos. IBM/73Z00421 and 74Z0048, New York, NY, 1973.

  5. D. Hanson and E.J. Sanford: J. Inst. Met., 1938, vol. 62, pp. 215–37.

    Google Scholar 

  6. J.S. Hwang: Solder Paste in Electronic Packaging, van Nostrand Reinhold, New York, NY, 1989.

    Google Scholar 

  7. K.L. Murty and I. Turlik: Proc. J. ASME/JSME, 1992, vol. 1, pp. 309–18.

    Google Scholar 

  8. E.S. Hedges: Tin and Its Alloys, Edward Arnold Publishers Ltd., London, 1960, p. 53.

    Google Scholar 

  9. J. Askill: Tracer Diffusion Data for Metals, Alloys and Simple Oxides, IFI Plenum, New York, NY, 1970, pp. 31–41.

    Google Scholar 

  10. O.D. Sherby: Acta Metall., 1979, vol. 27, pp. 387–94.

    Article  CAS  Google Scholar 

  11. J.E. Bird, A.K. Mukherjee, and J.E. Dorn: Quantitative Relation between Properties and Microstructure, Israel University Press, Jerusalem, 1969, pp. 255–82.

    Google Scholar 

  12. K.L. Murty: in Creep and Fracture of Engineering Materials and Structures, J.C. Earthman and F.A. Mohamed, eds., TMS, Warrendale, PA, 1997, pp. 739–47.

    Google Scholar 

  13. K.L. Murty and O. Kanert: J. Appl. Phys., 1990, vol. 67, pp. 2866–92.

    Article  CAS  Google Scholar 

  14. J.E. Breen and J. Weertman: J. Met., 1955, vol. 72, pp. 1230–34.

    Google Scholar 

  15. P.J. Fensham: Austr. J. Sci. Res., 1950, vol. 3A, p. 91.

    CAS  Google Scholar 

  16. J.D. Meakin and E. Klokholm: Trans. TMS-AIME, 1960, vol. 218, pp. 463–66.

    CAS  Google Scholar 

  17. G. Pawlicki: Nukleonika, 1967, vol. 12, p. 1123.

    CAS  Google Scholar 

  18. C. Coston and N.H. Nachtrieb: J. Phys. Chem., 1964, vol. 68, p. 1123.

    Google Scholar 

  19. S.Z. Bokhstein, S.T. Kishkin, and L.M. Moroz: Investigation of the Structure of Metals by Radioactive Isotope Methods, State Publishing House, Moscow, 1961.

    Google Scholar 

  20. W. Chomba and J. Andrewskiewicz: Nukleonika, 1960, vol. 5, p. 611.

    Google Scholar 

  21. R.E. Frenkel, O.D. Sherby, and J.E. Dorn: Acta Metall., 1955, vol. 3, p. 470.

    Article  CAS  Google Scholar 

  22. F.A. Mohamed, K.L. Murty, and J.W. Morris: Metall. Trans., 1973, vol. 4, pp. 935–39.

    CAS  Google Scholar 

  23. P. Adeva, G. Caruanan, O.A. Ruano, and M. Torralba: Mater. Sci. Eng. A, 1995, vol. 194, pp. 17–23.

    Article  Google Scholar 

  24. V. Raman and R. Berriche: J. Mater. Res., 1992, vol. 7, pp. 627–38.

    CAS  Google Scholar 

  25. S.N.G. Chu and J.C.M. Li: Mater. Sci. Eng., 1979, vol. 39, pp. 1–10.

    Article  CAS  Google Scholar 

  26. S.H. Suh, J.B. Cohen, and J. Weertman: Metall. Trans. A, 1983, vol. 14A, p. 117.

    Google Scholar 

  27. O.D. Sherby and P.M. Burke: Progr. Mater. Sci., 1967, vol. 1, pp. 325–90.

    Google Scholar 

  28. D. Grivas, K.L. Murty, and J.W. Morris: Acta Metall., 1979, vol. 27, pp. 731–37.

    Article  CAS  Google Scholar 

  29. R. Darveaux: IEEE Trans. Components, Hybrids Manufacturing Technol., 1992, vol. 15, pp. 1013–24.

    Article  CAS  Google Scholar 

  30. K.L. Murty: Scripta Metall., 1973, vol. 7, pp. 899–903.

    Article  CAS  Google Scholar 

  31. T.G. Langdon: Dislocations and Properties, The Institute of Metals, London, 1985, 221–37.

    Google Scholar 

  32. K.L. Murty, H. Yang, H.P. Deane, and L. Turlik: Proc. 3rd Pacific Rim Int. Conf. on Advanced Materials and Processing (PRICM), M.A. Imam, et al., TMS, Warrendale, 1997, vol. II, pp. 2581–88.

    Google Scholar 

  33. K.L. Murty, M.D. Mathew, Y. Wang, and F.M. Haggag: in Modeling the Mechanical Response of Structural Materials, Eric M. Taleff and Rao K. Mahidhara, eds., TMS, Warrendale, PA, 1998, pp. 145–52.

    Google Scholar 

  34. O.D. Sherby and J. Weertman: Acta Metall., 1979, vol. 27, p. 387.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathew, M.D., Yang, H., Movva, S. et al. Creep deformation characteristics of tin and tin-based electronic solder alloys. Metall Mater Trans A 36, 99–105 (2005). https://doi.org/10.1007/s11661-005-0142-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-005-0142-z

Keywords

Navigation