Skip to main content
Log in

Dislocation mechanics-based constitutive equations

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A review of constitutive models based on the mechanics of dislocation motion is presented, with focus on the models of Zerilli and Armstrong and the critical influence of Armstrong on their development. The models were intended to be as simple as possible while still reproducing the behavior of real metals. The key feature of these models is their basis in the thermal activation theory propounded by Eyring in the 1930’s. The motion of dislocations is governed by thermal activation over potential barriers produced by obstacles, which may be the crystal lattice itself or other dislocations or defects. Typically, in bcc metals, the dislocation-lattice interaction is predominant, while in fcc metals, the dislocation-dislocation interaction is the most significant. When the dislocation-lattice interaction is predominant, the yield stress is temperature and strain rate sensitive, with essentially athermal strain hardening. When the dislocation-dislocation interaction is predominant, the yield stress is athermal, with a large temperature and rate sensitive strain hardening. In both cases, a significant part of the athermal stress is accounted for by grain size effects, and, in some materials, by the effects of deformation twinning. In addition, some simple strain hardening models are described, starting from a differential equation describing creation and annihilation of mobile dislocations. Finally, an application of thermal activation theory to polymeric materials is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.R. Johnson and W.H. Cook: Proc. 7th Int. Symp. on Ballistics, The Hague, The Netherlands, 1983, p. 541.

  2. G.I. Taylor: Proc. R. Soc. London, 1934, vol. 145A, p. 362.

    Google Scholar 

  3. E. Orowan: Z. Phys., 1934, vol. 89, pp. 605, 614, and 634.

    Article  Google Scholar 

  4. M. Polanyi: Z. Phys., 1934, vol. 89, p. 660.

    Article  CAS  Google Scholar 

  5. H. Eyring: J. Chem. Phys., 1936, vol. 3, p. 107; J. Chem. Phys., 1936, vol. 4, p. 283.

    Article  Google Scholar 

  6. P.S. Follansbee and U.F. Kocks: Acta Metall., 1988, vol. 36, p. 81.

    Article  Google Scholar 

  7. F.J. Zerilli and R.W. Armstrong: J. Appl. Phys., 1987, vol. 61, p. 1816.

    Article  CAS  Google Scholar 

  8. F.J. Zerilli and R.W. Armstrong: Acta Metall. Mater., 1992, vol. 40, pp. 1803–08.

    Article  CAS  Google Scholar 

  9. U.F. Kocks, A.S. Argon, and M.F. Ashby: Thermodynamics and Kinetics of Slip, Progress in Materials Science Vol. 19, Pergamon, Oxford, United Kingdom, 1975.

    Google Scholar 

  10. C.S. Hartley: 2nd Int. Conf. on the Strength of Metals and Alloys, Vol. II, ASM, Metals Park, OH, 1970, p. 429ff.

    Google Scholar 

  11. P. Feltham: Br. J. Appl. Phys., 1969, vol. 2, p. 377.

    Google Scholar 

  12. R.W. Armstrong: (Ind.) J. Scientific Industrial Res., 1973, vol. 32, pp. 591–598; R.W. Armstrong and J.D. Campbell: The Microstructure and Design of Alloys, Institute of Metals and the Iron and Steel Institute, Cambridge, United Kingdom, 1973, vol. 1, p. 529ff.

    CAS  Google Scholar 

  13. R.W. Armstrong and J.D. Campbell: The Microstructure and Design of Alloys, Proc. 3rd Int. Conf. on the Strength of Metals and Alloys Vol. 1 Institute of Metals and the Iron and Steel Institute, Cambridge, United Kingdom, 1973, p. 529; H. Conrad: J. Iron Steel Inst., 1961, vol. 198, p. 364.

    Google Scholar 

  14. F.J. Zerilli and R.W. Armstrong: in High Strain Rate Effects on Polymer, Metal and Ceramic Matrix Composites and Other Advanced Materials, Y.D.S. Rajapakse and J.R. Vinson, eds., ASME, New York, NY, 1995, AD-Vol. 48, pp. 121–26.

    Google Scholar 

  15. G.R. Johnson and W.H. Cook: Eng. Fract. Mech., 1985, vol. 21, p. 31.

    Article  Google Scholar 

  16. R.W. Armstrong and F.J. Zerilli: J. Phys., Coll., 1988, vol. 49 (9), p. 529.

    Google Scholar 

  17. R.W. Armstrong and P.J. Worthington: Metallurgical Effects at High Strain Rates, Plenum Press, New York, NY, 1974, p. 401.

    Google Scholar 

  18. W.C. Leslie: in Metallurgical Effects at High Strain Rates, R.W. Rohde, B.M. Butcher, J.R. Holland, and C.H. Karnes, eds., Plenum, New York, NY, 1974, p. 571.

    Google Scholar 

  19. F.J. Zerilli and R.W. Armstrong: J. Appl. Phys., 1990, vol. 68, p. 1580.

    Article  CAS  Google Scholar 

  20. J.H. Bechtold and P.G. Shewmon: Trans. ASM, 1954, vol. 46, pp. 397–408.

    CAS  Google Scholar 

  21. J.H. Bechtold: Trans. AIME, 1956, vol. 206, pp. 142–46.

    Google Scholar 

  22. V. Ramachandran, R.W. Armstrong, and F.J. Zerilli: Tungsten and Tungsten Alloys—Recent Advances, TMS, Warrendale, PA, 1991, pp. 111–19.

    Google Scholar 

  23. F.J. Zerilli and R.W. Armstrong: Shock Compression of Condensed Matter—1991, Elsevier, Amsterdam, 1992, p. 257.

    Google Scholar 

  24. F.J. Zerilli and R.W. Armstrong: in Shock Waves in Condensed Matter 1987, Elsevier, Amsterdam, 1988, p. 273ff.

    Google Scholar 

  25. F.J. Zerilli and R.W. Armstrong: in Grain Size and Mechanical Properties—Fundamentals and Applications, M.A. Otooni, R.W. Armstrong, N.J. Grant, and K. Ishizaki, eds., Materials Research Society, Pittsburgh, PA, 1995, p. 149ff.

    Google Scholar 

  26. V. Ramachandran, A.T. Santhanam, and R.E. Reed-Hill: Ind. J. Technol., 1973, vol. 11, pp. 485–92.

    CAS  Google Scholar 

  27. W.H. Holt, W. Mock, F.J. Zerilli, and J.B. Clark: Mech. Mater., 1994, vol. 17, 195–201.

    Article  Google Scholar 

  28. F.J. Zerilli and R.W. Armstrong: Shock Compression of Condensed Matter 1989, Elsevier, Amsterdam, 1990, p. 357ff.

    Google Scholar 

  29. G.I. Taylor: Proc. R. Soc., 1934, vol. A145, p. 362ff.

  30. G.I. Taylor and H. Quinney: Proc. R. Soc., 1934, vol. A143, p. 307ff.

  31. Y. Bergstrom: Mater. Sci. Eng., 1970, vol. 5, p. 193ff.

  32. J. Klepaczko: Mater. Sci. Eng., 1975, vol. 18, pp. 121–35.

    Article  CAS  Google Scholar 

  33. Y. Estrin and H. Mecking: Acta Metall., 1984, vol. 32, pp. 57–70.

    Article  Google Scholar 

  34. D. McClean: Mechanical Properties of Metals, John Wiley & Sons, New York, NY, 1962.

    Google Scholar 

  35. S.R. Chen, G.T. Gray III, and S.R. Bingert: in Tantalum, E. Chen, A. Crowson, E. Lavernia, W. Ebihara, and P. Kumar, eds., TMS, Warrendale, PA, 1996, pp. 173–84.

    Google Scholar 

  36. F.J. Zerilli: Naval Surface Warfare Center Indian Head Division, Indian Head, MD, unpublished work, 1997.

  37. B. Escaig: Ann. Phys., 1978, vol. 3, pp. 207–20.

    CAS  Google Scholar 

  38. W. Kauzmann: Trans. Am. Int. Min. Metall. Eng., 1941, vol. 143, p. 57ff.

  39. J.J. Gilman: J. Appl. Phys., 1973, vol. 44, p. 675ff.

  40. O.A. Hasan and M.C. Boyce: Polymer, 1993, vol. 34, p. 5085ff.

  41. A.S. Argon: Phil. Mag., 1973, vol. 28, p. 839ff.

  42. F.J. Zerilli and R.W. Armstrong: in Shock Compression of Condensed Matter—1999, AIP Conf. Proc. 505, M.D. Furnish, L.C. Chhabildas, and R.S. Hixson, eds., American Institute of Physics, Melville, NY, 2000, pp. 531–34.

    Google Scholar 

  43. C. Bauwens-Crowet: J. Mater. Sci., 1973, vol. 8, p. 968ff; D. Fotheringham and B.W. Cherry: J. Mater. Sci., 1976, vol. 11, pp. 1368 and 1370.

  44. F.J. Zerilli and R.W. Armstrong: J. Phys. IV France, 2000, vol. 10, p. 3ff.

  45. F.J. Zerilli and R.W. Armstrong: in Shock Compression of Condensed Matter—2001, AIP Conf. Proc. 620, M.D. Furnish, N.N. Thadani, and Y. Horie, eds., American Institute of Physics, Melville, NY, 2002, pp. 657–60.

    Google Scholar 

  46. S.M. Walley and J.E. Field: DYMAT J., 1994, vol. 1, pp. 211–27 (Fig. 20).

    Google Scholar 

  47. S.M. Walley, J.E. Field, P.H. Pope, and N.A. Safford: J. Phys. III France, 1991, vol. 1, p. 1889 (Fig. 161).

    Article  CAS  Google Scholar 

  48. G.T. Gray, III, C.M. Cady, and W.R. Blumenthal: Constitutive and Damage Modeling of Inelastic Deformation and Phase Transformation, Proc. Plasticity ’99, 7th Int. Symp. on Plasticity and Its Current Applications, Akhtar S. Khan, ed., Neat Press, Fulton, MD, p. 955.

  49. J.A. Sauer and K.D. Pae: Coll. Polymer Sci., 1974, vol. 252, p. 680ff.

  50. N.G. McCrum: J. Polymer Sci., 1959, vol. 34, p. 355ff.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation given in the symposium “Dynamic Deformation: Constitutive Modeling, Grain Size, and Other Effects: In Honor of Prof. Ronald W. Armstrong,” March 2–6, 2003, at the 2003 TMS/ASM Annual Meeting, San Diego, California, under the auspices of the TMS/ASM Joint Mechanical Behavior of Materials Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zerilli, F.J. Dislocation mechanics-based constitutive equations. Metall Mater Trans A 35, 2547–2555 (2004). https://doi.org/10.1007/s11661-004-0201-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-004-0201-x

Keywords

Navigation