Skip to main content
Log in

A review of recent developments in the surface modification of LiMn2O4 as cathode material of power lithium-ion battery

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

An Erratum to this article was published on 02 October 2009

Abstract

LiMn2O4 (LMO) is a very attractive choice as cathode material for power lithium-ion batteries due to its economical and environmental advantages. However, LiMn2O4 in the 4-V region suffers from a poor cycling behavior. Recent research results confirm that modification by coating is an important method to achieve improved electrochemical performance of LMO, and the latest progress was reviewed in the paper. The surface treatment of LMO by coating oxides and nonoxide systems could decrease the surface area to retard the side reactions between the electrode and electrolyte and to further diminish the Mn dissolution during cycling test. At present, LiMn2O4 is the mainstreaming cathode material of power lithium-ion battery, and, especially the modified LMO, is the trend of development of power lithium-ion battery cathode material in the long term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2

Similar content being viewed by others

References

  1. Thackeray MM, Johnson PJ, de Picciotto LA, Bruce PG, Goodenough JB (1984) Mater Res Bull 19:179

    Article  CAS  Google Scholar 

  2. Amatucci GG, Schmutz CN, Blyr A, Sigala C, Gozdz AS, Larcher D, Tarascon JM (1997) J Power Sources 69:11

    Article  CAS  Google Scholar 

  3. Wohlfahrt-Mehrens M, Vogler C, Garche J (2004) J Power Sources 127:58

    Article  CAS  Google Scholar 

  4. Xia Y, Zhou Y, Yoshio M (1997) J Electrochem Soc 144:2593

    Article  CAS  Google Scholar 

  5. Xia Y, Zhang Q, Wang H, Nakamura H, Noguchi H, Yoshio M (2007) Electrochim Acta 52:4708

    Article  CAS  Google Scholar 

  6. Jeong I-S, Kim J-U, Gu H-B (2001) J Power Sources 102:55

    Article  CAS  Google Scholar 

  7. Sun Y-K, Hong K-J, Prakash J, Amine K (2002) Electrochem Commun 4:344

    Article  CAS  Google Scholar 

  8. Ein-Eli Y, Vaughey JT, Thackeray MM, Mukerjee S, Yang XQ, McBreen J (1999) J Electrochem Soc 146:908

    Article  CAS  Google Scholar 

  9. Molenda J, Marzec J, Świerczek K, Pałubiak D, Ojczyk W, Ziemnicki M (2004) Solid State Ionics 175:297

    Article  CAS  Google Scholar 

  10. Yi TF, Hu XG, Huo HB, Gao K (2006) Rare Metal Mat Eng 35:1350

    CAS  Google Scholar 

  11. Arora P, White RE, Doyle M (1998) J Electrochem Soc 145:3647

    Article  CAS  Google Scholar 

  12. Aubarch D, Zaban A, Schlecter A, Ein-Eli Y, Zinigrad E, Markowsky B (1995) J Electrochem Soc 142:2873

    Article  Google Scholar 

  13. Jang DH, Oh SM (1997) J Electrochem Soc 144:3342

    Article  CAS  Google Scholar 

  14. Arumugam D, Kalaignan GP (2008) J Electroanal Chem 624:197–204

    Article  CAS  Google Scholar 

  15. Lim S, Cho J (2008) Chem Commun 37:4472–4474

    Article  Google Scholar 

  16. Gnanaraj JS, Pol VG, Gedanken A, Aurbach D (2003) Electrochem Commun 5:940–945

    Article  CAS  Google Scholar 

  17. Liu D, Liu X, He Z (2007) J Alloys Compd 436:387–391

    Article  CAS  Google Scholar 

  18. Tu J, Zhao XB, Xie J, Cao GS, Zhuang DG, Zhu TJ, Tu JP (2007) J Alloys Compd 432:313–317

    Article  CAS  Google Scholar 

  19. Liu H, Cheng C, Hu Z, Zhang K (2007) Mater Chem Phys 101:276–279

    Article  CAS  Google Scholar 

  20. Liu H, Cheng C, Hu Z, Zhang K (2005) J Mater Sci 40:5767–5769

    Article  CAS  Google Scholar 

  21. Ha H-W, Yun NJ, Kim K (2007) Electrochim Acta 52:3236–3241

    Article  CAS  Google Scholar 

  22. Lin Y-M, Wu H-C, Yen Y-C, Guo Z-Z, Yang M-H, Chen H-M, Sheu H-S, Wu N-L (2005) J Electrochem Soc 152:A1526–A1532

    Article  CAS  Google Scholar 

  23. Kim J-S, Johnson CS, Vaughey JT, Hackney SA, Walz KA, Zeltner WA, Anderson MA, Thackeray MM (2004) J Electrochem Soc 151:A1755–A1761

    Article  CAS  Google Scholar 

  24. Lee S-W, Kim K-S, Moon H-S, Kim H-J, Cho B-W, Cho W-I, Ju J-B, Park J-W (2004) J Power Sources 126:150–155

    Article  CAS  Google Scholar 

  25. Yang Z, Yang W, Evans DG, Zhao Y, Wei X (2009) J Power Sources 189:1147–1153

    Article  CAS  Google Scholar 

  26. Cho J, Kim Y-W, Kim B, Lee J-G, Park B (2003) Angew Chem Int Ed 42:1618

    Article  CAS  Google Scholar 

  27. Cho J, Lee J-G, Kim B, Park B (2003) Chem Mater 15:3190

    Article  CAS  Google Scholar 

  28. Liu DQ, He ZZ, Liu XQ (2007) Mater Lett 25:4703

    Article  Google Scholar 

  29. Tu J, Zhao XB, Cao GS, Tu JP, Zhu TJ (2006) Mater Lett 60:3251–3254

    Article  CAS  Google Scholar 

  30. Zhou W-J, He B-L, Li HL (2008) Mater Res Bull 43:2285

    Article  CAS  Google Scholar 

  31. Son JT, Park KS, Kim HG, Chung HT (2004) J Power Sources 126:182

    Article  CAS  Google Scholar 

  32. Kannan AM, Manthiram A (2002) Electrochem Solid State Lett 5:A167

    Article  CAS  Google Scholar 

  33. Park SC, Kim YM, Kang YM, Kim KT, Lee PS, Lee JY (2001) J Power Sources 103:86

    Article  CAS  Google Scholar 

  34. Park SC, Han YS, Kang YS, Lee PS, Ahn S, Lee HM, Lee JY (2001) J Electrochem Soc 148:A680

    Article  CAS  Google Scholar 

  35. Liu Z, Wang H, Fang L, Lee JY, Gan LM (2002) J Power Sources 104:101

    Article  CAS  Google Scholar 

  36. Park S-C, Kim Y-M, Han S-C, Ahn S, Ku C-H, Lee J-Y (2002) J Power Sources 107:42

    Article  CAS  Google Scholar 

  37. Liu D-Q, Liu X-Q, He Z-Z (2007) Mater Chem Phys 105:362–366

    Article  CAS  Google Scholar 

  38. Liu D-Q, Yu J, Sun Y-H, He Z-Z, Liu X-Q (2007) Chin J Inorg Chem 23:41

    Google Scholar 

  39. Yuan YF, Wu HM, Guo SY, Wu JB, Yang JL, Wang XL, Tu JP (2008) Appl Surf Sci 255:2225

    Article  CAS  Google Scholar 

  40. Chan H-W, Duh J-G, Sheu H-S (2006) J Electrochem Soc 153:A1533

    Article  CAS  Google Scholar 

  41. Han AR, Kim TW, Park DH, Hwang S-J, Choy J-H (2007) J Phys Chem C 111:11347

    Google Scholar 

  42. Patey TJ, Büchel R, Ng SH, Krumeich F, Pratsinis SE, Novák P (2009) J Power Sources 189:149

    Article  CAS  Google Scholar 

  43. Li JG, He XM, Zhao RS (2007) Trans Nonferrous Met Soc China (English Edition) 17:1324

    Article  CAS  Google Scholar 

  44. Lee K-S, Myung S-T, Amine K, Yashiro H, Sun Y-K (2009) J Mater Chem 19:1995

    Article  CAS  Google Scholar 

  45. Eddrief M, Dzwonkowski P, Julien C, Balkanski M (1991) Solid State Ionics 45:77

    Article  CAS  Google Scholar 

  46. Soppe W, Aldenkamp F, den Hartog HW (1987) J Non-Cryst Solids 91:351

    Article  CAS  Google Scholar 

  47. Chan H-W, Duh J-G, Sheen S-R (2004) Surf Coat Technol 188–189:116

    Article  Google Scholar 

  48. Şahan H, Göktepe H, Patat Ş, Ülgen A (2008) Solid State Ionics 178:1837

    Article  Google Scholar 

  49. Chan HW, Duh JG, Sheen SR (2006) Electrochim Acta 51:3645

    Article  CAS  Google Scholar 

  50. Hu G, Wang X, Chen F, Zhou J, Li R, Deng Z (2005) Electrochem Commun 7:383

    Article  CAS  Google Scholar 

  51. Arbizzani C, Mastragostino M, Rossi M (2002) Electrochem Commun 4:545

    Article  CAS  Google Scholar 

  52. Li C, Zhang HP, Fu LJ, Liu H, Wu YP, Rahm E, Holze R, Wu HQ (2006) Electrochim Acta 51:3872–3883

    Article  CAS  Google Scholar 

  53. Hung F-Y, Lui T-S, Liao H-C (2007) Appl Surf Sci 253:7443

    Article  CAS  Google Scholar 

  54. Vidu R, Stroeve P (2004) Ind Eng Chem Res 43:3314

    Article  CAS  Google Scholar 

  55. Sugita M, Noguchi H, Soejima Y, Yoshio M (2000) Electrochemistry 68:587

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ting-Feng Yi or Xiao-Dong Zhu.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11581-009-0386-5

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yi, TF., Zhu, YR., Zhu, XD. et al. A review of recent developments in the surface modification of LiMn2O4 as cathode material of power lithium-ion battery. Ionics 15, 779–784 (2009). https://doi.org/10.1007/s11581-009-0373-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-009-0373-x

Keywords

Navigation