Skip to main content
Log in

Morphology, anatomy, and molecular studies of the ectomycorrhiza formed axenically by the fungus Sistotrema sp. (Basidiomycota)

  • Original Article
  • Published:
Mycological Progress Aims and scope Submit manuscript

Abstract

Several species of the corticioid (resupinate) genus Sistotrema of the cantharelloid clade (Basidiomycota) were recently found to be ectomycorrhizal. This changed the traditional assertion that all Sistotrema species are strictly wood rotting and suggests that the genus may be polyphyletic. In the present investigation, a still unknown root tip-associated fungal specimen (EW63) was isolated and found to be associated with an above-ground fruiting body. Sequencing of the ITS and the nucLSU DNA regions and phylogenetic analyses verified that the root-associated fungus and the fruiting body represented the same species, which was found to belong to the genus Sistotrema. To prove the ectomycorrhizal status of this strain, axenic Pinus sylvestris resyntheses in flask cultures were conducted. Growth parameters of the seedlings were determined and the morphology and anatomy of the synthesized mycorrhizas were described. Length and dry mass of the Pinus shoot as well as those of the total root tips were found to be enhanced as a result of the mycorrhizal association. Mycorrhizal frequency was high (51.5%) in these cultures. Mycorrhizal root tips were cottony light ochre with a thin plectenchymatic hyphal mantle. The clamps of the fruiting body hyphae as well as the mycorrhiza were ampullately inflated. This is the first report proving in axenic culture that a fungus belonging to the genus Sistotrema forms true ectomycorrhiza.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abarenkov K, Nilsson RH, Larsson K-H et al (2010) The UNITE database for molecular identification of fungi - recent updates and future perspectives. New Phytol 186:281–285

    Article  PubMed  Google Scholar 

  • Agerer R (1991) Characterization of ectomycorrhiza. In: Norris JR, Read DJ, Varma AK (eds) Techniques for the study of mycorrhiza. Academic, London, pp 25–73

    Chapter  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-Blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2010) GenBank. Nucleic Acids Res 39:D32–D37. doi:10.1093/nar/gkq1079

    Article  PubMed  Google Scholar 

  • Binder M, Hibbett DS, Larsson K-H et al (2005) The phylogenetic distribution of resupinate forms across the major clades of mushroom-forming fungi (Homobasidiomycetes). Syst Biodivers 3:113–157. doi:10.1017/S1477200005001623

    Article  Google Scholar 

  • Bourdot H, Galzin A (1925) Hyménomycètes de France (IX. Porés). Bull Trimestriel Soc Mycol Fr 41:98–255

    Google Scholar 

  • Burgess T, Dell B, Malajczuk N (1994) Variation in mycorrhizal development and growth stimulation by 20 Pisolithus isolates inoculated on to Eucalyptus grandis W. Hill ex Maiden. New Phytol 127:731–739

    Article  Google Scholar 

  • Burgess T, Dell B, Malajczuk N (1996) In vitro synthesis of Pisolithus-Eucalyptus ectomycorrhizae: synchronization of lateral tip emergence and ectomycorrhizal development. Mycorrhiza 6:189–196

    Article  Google Scholar 

  • Di Marino E, Scattolin L, Bodensteiner P, Agerer R (2008) Sistotrema is a genus with ectomycorrhizal species – confirmation of what sequence studies already suggested. Mycol Prog 7:169–176. doi:10.1007/s11557-008-0562-4

    Article  Google Scholar 

  • Farris JS, Albert VA, Källersjö M, Lipscomb D, Kluge AG (1996) Parsimony jacknifing outperforms neighbor-joining. Cladistics 12:99–124. doi:10.1111/j.1096-0031.1996.tb00196.x

    Article  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  PubMed  CAS  Google Scholar 

  • Hibbett DS, Ohman A, Glotzer D, Nuhn M, Kirk P, Nilsson RH (2011) Progress in molecular and morphological taxon discovery in Fungi and options for formal classification of environmental sequences. Fungal Biol Rev 25:38–47. doi:10.1016/j.fbr.2011.01.001

    Article  Google Scholar 

  • Hopple JS, Vilgalys R (1999) Phylogenetic relationships in the mushroom genus Coprinus and dark-spored allies based on sequence data from the nuclear gene coding for the large ribosomal subunit RNA; divergent domains, outgroups and monophyly. Mol Phylogenet Evol 13:1–19

    Article  PubMed  CAS  Google Scholar 

  • Kottke I, Beiter A, Weiss M, Haug I, Oberwinkler F, Nebel M (2003) Heterobasidiomycetes form symbiotic associations with hepatics: Jungermanniales have sebacinoid mycobionts while Aneura pinguis (Metzgeriales) is associated with a Tulasnella species. Mycol Res 107:957–968. doi:10.1017/S095375623008141

    Article  PubMed  Google Scholar 

  • Kottke I, Guttenberger M, Hampp R, Oberwinkler F (1987) An in vitro method for establishing mycorrhizae on coniferous tree seedlings. Trees 1:191–194. doi:10.1007/BF00193562

    Article  Google Scholar 

  • Larsson K-H (2007) Molecular phylogeny of Hyphoderma and the reinstatement of Peniophorella. Mycol Res 111:186–195

    Article  PubMed  Google Scholar 

  • Larsson K-H, Larsson E, Kõljalg U (2004) High phylogenetic diversity among corticioid homobasidiomycetes. Mycol Res 108:983–1002. doi:10.1017/S0953756204000851

    Article  PubMed  CAS  Google Scholar 

  • Moncalvo J-M, Nilsson RH, Koster B et al (2006) The cantharelloid clade: dealing with incongruent gene trees and phylogenetic reconstruction methods. Mycologia 98:937–948. doi:10.3852/mycologia.98.6.937

    Article  PubMed  Google Scholar 

  • Montecchio L, Rossi S, Grendene A (2002) Amphinema byssoides (Pers.: Fr.) J. Eriss. + Quercus ilex L. Descr Ectomyc 6:1–6

    Google Scholar 

  • Münzenberger B, Otter T, Wüstrich D, Polle A (1997) Peroxidase and laccase activities in mycorrhizal and non-mycorrhizal fine roots of Norway spruce (Picea abies) and larch (Larix decidua). Can J Bot 75:932–938

    Article  Google Scholar 

  • Nagy LG, Petkovits T, Kovacs GM, Voigt K, Vagvölgyi C, Papp T (2011) Where is the unseen fungal diversity hidden? A study of Mortierella reveals a large contribution of reference collections to the identification of fungal environmental sequences. New Phytol. doi:10.1111/j.1469-8137.2011.03707.x

  • Nilsson RH, Larsson K-H, Larsson E, Kõljalg U (2006) Fruiting body-guided molecular identification of root-tip mantle mycelia provides strong indications of ectomycorrhizal associations in two species of Sistotrema (Basidiomycota). Mycol Res 110:1426–1432. doi:10.1016/j.mycres.2006.09.017

    Article  PubMed  CAS  Google Scholar 

  • Nilsson RH, Ryberg M, Sjökvist E, Abarenkov K (2011) Rethinking taxon sampling in the light of environmental sequencing. Cladistics 27:197–203

    Article  Google Scholar 

  • Nylander JAA (2004) MrModeltest v2. Program distributed by the author.

  • O’Donnell K (1993) Fusarium and its near relatives. In: Reynolds DR, Taylor JW (eds) The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics. CAB International, Washington DC, pp 225–233

    Google Scholar 

  • Peay KG, Bruns TD, Bergemann SE, Garbelotto M (2007) A strong species-area relationship for eukaryotic soil microbes: island size matters for ectomycorrhizal fungi. Ecol Lett 10:470–480

    Article  PubMed  Google Scholar 

  • Pickles BJ, Genney DR, Potts JM, Lennon JL, Anderson IC, Alexander IJ (2010) Spatial and temporal ecology of Scots pine ectomycorrhizas. New Phytol 186:755–768

    Article  PubMed  CAS  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  CAS  Google Scholar 

  • Ryberg M, Kristiansson E, Sjökvist E, Nilsson RH (2009) An outlook on the fungal internal transcribed spacer sequences in GenBank and the introduction of a web-based tool for the exploration of fungal diversity. New Phytol 181:471–477

    Article  PubMed  CAS  Google Scholar 

  • Seifert KA, Rossman AY (2010) How to describe a new fungal species. IMA Fungus 1:109–116

    Article  PubMed  Google Scholar 

  • Spurr AR (1969) A low viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43. doi:10.1016/S0022-5320(69)90033-1

    Article  PubMed  CAS  Google Scholar 

  • Swofford DL (2003) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer, Sunderland, MA

  • Tedersoo L, May TW, Smith ME (2010) Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20:217–263

    Article  PubMed  Google Scholar 

  • Urich T, Lanzén A, Qi J, Huson DH, Schleper C et al (2008) Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptone. PLoS One 3:e2527. doi:10.1371/journal.pone.0002527

    Article  PubMed  Google Scholar 

  • Weiss M, Agerer R (1988) Studien an Ektomycorrhizen XII. Drei nichtidentifizierte Mykorrhizen an Picea abies (L.) Karst. aus einer Baumschule. Eur J For Path 18:26–43

    Article  Google Scholar 

  • White TJ, Bruns TD, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, New York, pp 315–322

    Google Scholar 

Download references

Acknowledgements

The authors are indebted to the German Research Foundation (DFG), project Mu 1035/9-3 for the financial support. We thank M. Roth for the excellent technical assistance and T. Juretzek and the Institute of Clinical Microbiology at the Carl Thiem Klinikum Cottbus for performing the automated sequencing. We also thank M.T. Lavin-Zimmer, GFZ Potsdam for English corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babette Münzenberger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Münzenberger, B., Schneider, B., Nilsson, R.H. et al. Morphology, anatomy, and molecular studies of the ectomycorrhiza formed axenically by the fungus Sistotrema sp. (Basidiomycota). Mycol Progress 11, 817–826 (2012). https://doi.org/10.1007/s11557-011-0797-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11557-011-0797-3

Keywords

Navigation