Skip to main content

Advertisement

Log in

Evaluation of Multitype Mathematical Models for CFSE-Labeling Experiment Data

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Carboxy-fluorescein diacetate succinimidyl ester (CFSE) labeling is an important experimental tool for measuring cell responses to extracellular signals in biomedical research. However, changes of the cell cycle (e.g., time to division) corresponding to different stimulations cannot be directly characterized from data collected in CFSE-labeling experiments. A number of independent studies have developed mathematical models as well as parameter estimation methods to better understand cell cycle kinetics based on CFSE data. However, when applying different models to the same data set, notable discrepancies in parameter estimates based on different models has become an issue of great concern. It is therefore important to compare existing models and make recommendations for practical use. For this purpose, we derived the analytic form of an age-dependent multitype branching process model. We then compared the performance of different models, namely branching process, cyton, Smith–Martin, and a linear birth–death ordinary differential equation (ODE) model via simulation studies. For fairness of model comparison, simulated data sets were generated using an agent-based simulation tool which is independent of the four models that are compared. The simulation study results suggest that the branching process model significantly outperforms the other three models over a wide range of parameter values. This model was then employed to understand the proliferation pattern of CD4+ and CD8+ T cells under polyclonal stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaike, H. (1973). Information theory as an extension of the maximum likelihood principle. In B. N. Petrov & F. Csaki (Eds.), Second international symposium on information theory (pp. 267–281). Budapest: Akademiai Kiado.

    Google Scholar 

  • Akkouchi, M. (2005). On the convolution of gamma distributions. Soochow J. Math., 31(2), 205–211.

    MathSciNet  MATH  Google Scholar 

  • Asquith, B., Debacq, C., Florins, A., Gillet, N., Sanchez-Alcaraz, T., Mosley, A., & Willems, L. (2006). Quantifying lymphocyte kinetics in vivo using carboxyfluorescein diacetate succinimidyl ester (CFSE). Proc. R. Soc. B, 273, 1165–1171.

    Article  Google Scholar 

  • Athreya, K. B., & Ney, P. E. (1972). Branching processes. Berlin: Springer.

    MATH  Google Scholar 

  • Bellman, R., & Harris, T. (1952). On age-dependent binary branching processes. Ann. Math., 55(2), 280–295.

    Article  MathSciNet  MATH  Google Scholar 

  • Bernard, S., Pujo-Menjouret, L., & Mackey, M. C. (2003). Analysis of cell kinetics using a cell division marker: mathematical modeling of experimental data. Biophys. J., 84, 3414–3424.

    Article  Google Scholar 

  • Bonnevier, J. L., & Mueller, D. L. (2002). Cutting edge: B7/CD28 interactions regulate cell cycle progression independent of the strength of TCR signaling. J. Immunol., 169(12), 6659–6663.

    Google Scholar 

  • Burnham, K. P., & Anderson, D. R. (2004). Multimodel inference: understanding AIC and BIC in model selection. Sociol. Methods Res., 33, 261–304.

    Article  MathSciNet  Google Scholar 

  • Clyde, R. G., Bown, J. L., Hupp, T. R., Zhelev, N., & Crawford, J. W. (2006). The role of modelling in identifying drug targets for diseases of the cell cycle. J. R. Soc. Interface, 22, 617–627.

    Article  Google Scholar 

  • Cooper, S. (1982). The continuum model: statistical implications. J. Theor. Biol., 94, 783–800.

    Article  Google Scholar 

  • Cowan, R., & Morris, V. B. (1986). Cell population dynamics during the differentiation phase of tissue development. J. Theor. Biol., 122, 205–224.

    Article  MathSciNet  Google Scholar 

  • Crump, K. S., & Mode, C. J. (1969). An age-dependent branching process with correlations among sister cells. J. Appl. Probab., 6, 205–219.

    Article  MathSciNet  MATH  Google Scholar 

  • De Boer, R. J., & Perelson, A. S. (2005). Estimating division and death rates from CFSE data. J. Comput. Appl. Math., 184, 140–164.

    Article  MathSciNet  MATH  Google Scholar 

  • De Boer, R. J., Homann, D., & Perelson, A. S. (2003). Different dynamics of CD4+ and CD8+ T cell responses during and after acute lymphocytic choriomeningitis virus infection. J. Immunol., 171(8), 3928–3935.

    Google Scholar 

  • De Boer, R. J., Ganusov, V. V., Milutinovic, D., Hodgkin, P. D., & Perelson, A. S. (2006). Estimating lymphocyte division and death rates from CFSE data. Bull. Math. Biol., 68, 1011–1031.

    Article  Google Scholar 

  • Deenick, E. K., Hasbold, J., & Hodgkin, P. D. (1999). Switching to IgG3, IgG2b, and IgA is division linked and independent, revealing a stochastic framework for describing differentiation. J. Immunol., 163, 4707–4714.

    Google Scholar 

  • Deenick, E. K., Gett, A. V., & Hodgkin, P. D. (2003). Stochastic model of T cell proliferation: a calculus revealing IL-2 regulation of precursor frequencies, cell cycle time, and survival. J. Immunol., 170(10), 4963–4972.

    Google Scholar 

  • Fleurant, C., Duchesne, J., & Raimbault, P. (2004). An allometric model for trees. J. Theor. Biol., 227(1), 137–147.

    Article  MathSciNet  Google Scholar 

  • Foulds, K. E., Zenewicz, L. A., Shedlock, D. J., Jiang, J., Troy, A. E., & Shen, H. (2002). Cutting edge: CD4 and CD8 T cells are intrinsically different in their proliferative responses. J. Immunol., 168, 1528–1532.

    Google Scholar 

  • Ganusov, V. V., Pilyugin, S. S., De Boer, R. J., Murali-Krishna, K., Ahmed, R., & Antia, R. (2005). Quantifying cell turnover using CFSE data. J. Immunol. Methods, 298, 183–200.

    Article  Google Scholar 

  • Ganusov, V. V., Milutinovic, D., & De Boer, R. J. (2007). IL-2 regulates expansion of CD4+ T cell populations by affecting cell death: insights from modeling CFSE data. J. Immunol., 179, 950–957.

    Google Scholar 

  • Gett, A. V., & Hodgkin, P. D. (2000). A cellular calculus for signal integration by T cells. Nat. Immunol., 1(3), 239–244.

    Article  Google Scholar 

  • Glover, F. (1977). Heuristics for integer programming using surrogate constraints. Decis. Sci., 8, 156–166.

    Article  Google Scholar 

  • Guo, Z., & Tay, J. C. (2008). Multi-timescale event-scheduling in multi-agent immune simulation models. Biosystems, 91, 126–145.

    Article  Google Scholar 

  • Hasbold, J. A., Lyons, A. B., Kehry, M. R., & Hodgkin, P. D. (1998). Cell division number regulates IgG1 and IgE switching of B cells following stimulation by CD40 ligand and IL-4. Eur. J. Immunol., 28, 1040–1051.

    Article  Google Scholar 

  • Hawkins, E. D., Turner, M. L., Dowling, M. R., van Gend, C., & Hodgkin, P. D. (2007). A model of immune regulation as a consequence of randomized lymphocyte division and death times. Proc. Natl. Acad. Sci. USA, 104(12), 5032–5037.

    Article  Google Scholar 

  • Hawkins, E. D., Markham, J. F., McGuinness, L. P., & Hodgkin, P. D. (2009). A single-cell pedigree analysis of alternative stochastic lymphocyte fates. Proc. Natl. Acad. Sci. USA, 106(32), 13457–13462.

    Article  Google Scholar 

  • Heyde, C. C., & Seneta, E. (1977). I.J. Bienayme: statistical theory anticipated. Berlin: Springer.

    MATH  Google Scholar 

  • Hodgkin, P. D., Lee, J. H., & Lyons, A. B. (1996). B cell differentiation and isotype switching is related to division cycle number. J. Exp. Med., 184, 277–281.

    Article  Google Scholar 

  • Hyrien, O., & Zand, M. S. (2008). A mixture model with dependent observations for the analysis of CFSE-labeling experiments. J. Am. Stat. Assoc., 103(481), 222–239.

    Article  MathSciNet  MATH  Google Scholar 

  • Hyrien, O., Mayer-Pröschel, M., Noble, M., & Yakovlev, A. (2005). A stochastic model to analyze clonal data on multi-type cell populations. Biometrics, 61, 199–207.

    Article  MathSciNet  MATH  Google Scholar 

  • Jagers, P. (1975). Branching processes with biological applications. London: Wiley.

    MATH  Google Scholar 

  • Karlin, S., & Taylor, H. M. (1975). A first course in stochastic processes (2nd ed.). San Diego: Academic Press.

    MATH  Google Scholar 

  • Kimmel, M. (1980). Cellular population dynamics. I. Model construction and reformulation. Math. Biosci., 48(3–4), 211–224.

    Article  MathSciNet  MATH  Google Scholar 

  • Kimmel, M., & Axelrod, D. E. (1991). Unequal cell division, growth regulation and colony size of mammalian cells: a mathematical model and analysis of experimental data. J. Theor. Biol., 153, 157–180.

    Article  Google Scholar 

  • Kimmel, M., & Axelrod, D. E. (2002). Branching processes in biology. New York: Springer.

    MATH  Google Scholar 

  • Kimmel, M., & Traganos, F. (1986). Estimation and prediction of cell cycle specific effects of anticancer drugs. Math. Biosci., 80, 187–208.

    Article  MATH  Google Scholar 

  • Koch, A. L. (1999). The re-incarnation, re-interpretation and re-demise of the transition probability model. J. Biotech., 71, 143–156.

    Article  Google Scholar 

  • Laguna, M., & Marti, R. (2003). Scatter search: methodology and implementations. Boston: Kluwer Academic.

    Book  Google Scholar 

  • Laguna, M., & Marti, R. (2005). Experimental testing of advanced scatter search designs for global optimization of multimodal functions. J. Glob. Optim., 33, 235–355.

    Article  MathSciNet  MATH  Google Scholar 

  • Lee, H. Y., & Perelson, A. S. (2008). Modeling T cell proliferation and death in vitro based on labeling data: generalizations of the Smith–Martin cell cycle model. Bull. Math. Biol., 70(1), 21–44.

    Article  MathSciNet  MATH  Google Scholar 

  • Lee, H., Hawkins, E., Zand, M. S., Mosmann, T., Wu, H., Hodgkin, P. D., & Perelson, A. S. (2009). Interpreting CFSE obtained division histories of B cells in vitro with Smith–Martin and cyton type models. Bull. Math. Biol., 71(7), 1649–1670.

    Article  MathSciNet  MATH  Google Scholar 

  • Leon, K., Faro, J., & Carneiro, J. (2004). A general mathematical framework to model generation structure in a population of asynchronously dividing cells. J. Theor. Biol., 229, 455–476.

    Article  MathSciNet  Google Scholar 

  • Liang, H., Miao, H., & Wu, H. (2010). Estimation of constant and time-varying dynamic parameters of HIV infection in a nonlinear differential equation model. Ann. Appl. Stat., accepted.

  • Liu, D., Yu, J., Chen, H., Reichman, R., Wu, H., & Jin, X. (2006). Statistical determination of threshold for cellular division in the CFSE-labeling assay. J. Immunol. Methods, 312(1–2), 126–136.

    Article  Google Scholar 

  • Lyons, A. B. (2000). Analyzing cell division in vivo and in vitro using flow cytometric measurement of CFSE dye dilution. J. Immunol. Methods, 243, 147–154.

    Article  Google Scholar 

  • Macken, C. A., & Perelson, A. S. (1988). Lecture notes in biomathematics: Vol. 76. Stem cell proliferation and differentiation: a multitype branching process model. New York: Springer.

    MATH  Google Scholar 

  • Mathai, A. (1982). Storage capacity of a dam with gamma type inputs. Ann. Inst. Stat. Math., 34(1), 591–597.

    Article  MathSciNet  MATH  Google Scholar 

  • Miao, H., Dykes, C., Demeter, L. M., Cavenaugh, J., Park, S. Y., Perelson, A. S., & Wu, H. (2008). Modeling and estimation of kinetic parameters and replicative fitness of HIV-1 from flow-cytometry- based growth competition experiments. Bull. Math. Biol., 70(6), 1749–1771.

    Article  MathSciNet  MATH  Google Scholar 

  • Miao, H., Dykes, C., Demeter, L. M., & Wu, H. (2009). Differential equation modeling of HIV viral fitness experiments: model identification, model selection, and multi-model inference. Biometrics, 65(1), 292–300.

    Article  MathSciNet  MATH  Google Scholar 

  • Miao, H., Xia, X., Perelson, A. S., & Wu, H. (2010). Identifiability of nonlinear ODE models with applications in viral dynamics. SIAM Rev. (in press).

  • Moles, C. G., Banga, J. R., & Keller, K. (2004). Solving nonconvex climate control problems: pitfalls and algorithm performances. Appl. Soft Comput., 5(1), 35–44.

    Article  Google Scholar 

  • Moschopoulos, P. G. (1985). The distribution of the sum of independent gamma random variables. Ann. Inst. Stat. Math., 37(3), 541–544.

    Article  MathSciNet  MATH  Google Scholar 

  • Nocedal, J., & Wright, S. J. (1999). Numerical optimization. New York: Springer.

    Book  MATH  Google Scholar 

  • Nordon, R. E., Nakamura, M., Ramirez, C., & Odell, R. (1999). Analysis of growth kinetics by division tracking. Immunol. Cell Biol., 77, 523–529.

    Article  Google Scholar 

  • Novak, B., & Tyson, J. J. (1995). Quantitative analysis of a molecular model of mitotic control in fission yeast. J. Theor. Biol., 173, 283–305.

    Article  Google Scholar 

  • Novak, B., & Tyson, J. J. (1997). Modeling the control of DNA replication in fission yeast. Proc. Natl. Acad. Sci. USA, 94, 9147–9152.

    Article  Google Scholar 

  • Novak, B., & Tyson, J. J. (2004). A model for restriction point control of the mammalian cell cycle. J. Theor. Biol., 230, 563–579.

    Article  MathSciNet  Google Scholar 

  • Pilyugin, S. S., Ganusov, V. V., Murali-Krishna, K., Ahmed, R., & Antia, R. (2003). The rescaling method for quantifying the turnover of cell population. J. Theor. Biol., 225, 275–283.

    Article  MathSciNet  Google Scholar 

  • Powell, E. O. (1955). Some features of the generation times of individual bacteria. Biometrika, 42(1–2), 16–44.

    Google Scholar 

  • Revy, P., Sospedra, M., Barbour, B., & Trautmann, A. (2001). Functional antigen-independent synapses formed between T cells and dendritic cells. Nat. Immunol., 2(10), 925–931.

    Article  Google Scholar 

  • Rodriguez-Fernandez, M., Egea, J. A., & Banga, J. R. (2006). Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems. BMC Bioinform., 7, 483.

    Article  Google Scholar 

  • Schwarz, G. (1978). Estimating the dimensions of a model. Ann. Stat., 6, 461–464.

    Article  MATH  Google Scholar 

  • Sim, C. H. (1991). Point processes with correlated gamma interarrival times. Stat. Probab. Lett., 15(2), 135–141.

    Article  MathSciNet  Google Scholar 

  • Smith, J. A., & Martin, L. (1973). Do cells cycle? Proc. Natl. Acad. Sci. USA, 70, 1263–1267.

    Article  Google Scholar 

  • Smith, J. A., Laurence, D. J. R., & Rudland, P. S. (1981). Limitations of cell kinetics in distinguishing cell cycle models. Nature, 293, 648–650.

    Article  Google Scholar 

  • Stewart, T., Strijbosch, L. W. G., Moors, J. J. A., & Van Batenburg, P. (2007). A simple approximation to the convolution of gamma distributions. Tilburg University, Center for Economic Research.

  • Storn, R., & Price, K. (1997). Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim., 11, 341–359.

    Article  MathSciNet  MATH  Google Scholar 

  • Thom, H. C. S. (1968). Approximate convolution of the gamma and mixed gamma distributions. Mon. Weather Rev., 96(12), 883–886.

    Article  Google Scholar 

  • Toni, T., Welch, D., Strelkowa, N., Ipsen, A., & Stumpf, M. P. H. (2009). Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. J. R. Soc. Interface, 6(31), 187–202.

    Article  Google Scholar 

  • Tyrcha, J. (2001). Age-dependent cell cycle models. J. Theor. Biol., 213(1), 89–101.

    Article  MathSciNet  Google Scholar 

  • Tyson, J. J. (1991). Modeling the cell division cycle: cdc2 and cycling interactions. Proc. Natl. Acad. Sci. USA, 88, 7328–7332.

    Article  Google Scholar 

  • Vellaisamy, P., & Upadhye, N. S. (2009). On the sums of compound negative binomial and gamma random variables. J. Appl. Probab., 46, 272–283.

    Article  MathSciNet  MATH  Google Scholar 

  • Wellard, C., Markham, J., Hawkins, E. D., & Hodgkin, P. D. (2010). The effect of correlations on the population dynamics of lymphocytes. J. Theor. Biol., 264(2), 443–449.

    Article  Google Scholar 

  • Whitmire, J. K., & Ahmed, R. (2000). Costimulation in antiviral immunity: differential requirements for CD4(+) and CD8(+) T cell responses. Curr. Opin. Immunol., 12(4), 448–455.

    Article  Google Scholar 

  • Yakovlev, A. Y., & Yanev, N. M. (1989). Transient processes in cell proliferation kinetics. Heidelberg: Springer.

    MATH  Google Scholar 

  • Yakovlev, A. Y., & Yanev, N. M. (2006). Branching stochastic processes with immigration in analysis of renewing cell pupulations. Math. Biosci., 203, 37–63.

    Article  MathSciNet  MATH  Google Scholar 

  • Yakovlev, A. Y., Mayer-Pröschel, M., & Noble, M. (1998). A stochastic model of brain cell differentiation in tissue culture. J. Math. Biol., 37, 49–60.

    Article  MATH  Google Scholar 

  • Yakovlev, A. Y., Stoimenova, V. K., & Yanev, N. M. (2008). Branching processes as models of progenitor cell populations and estimation of the offspring distributions. J. Am. Stat. Assoc., 103(484), 1357–1366.

    Article  MathSciNet  Google Scholar 

  • Ye, Y. (1987). Interior algorithms for linear, quadratic and linearly constrained non-linear programming. Ph.D. thesis, Dept. of ESS, Stanford University.

  • Zilman, A., Ganusov, V. V., & Perelson, A. S. (2010). Stochastic models of lymphocyte proliferation and death. PLoS ONE, 5(9), e12775.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyu Miao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miao, H., Jin, X., Perelson, A.S. et al. Evaluation of Multitype Mathematical Models for CFSE-Labeling Experiment Data. Bull Math Biol 74, 300–326 (2012). https://doi.org/10.1007/s11538-011-9668-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-011-9668-y

Keywords

Navigation