Skip to main content

Advertisement

Log in

A Stochastic Model of Oscillatory Blood Testosterone Levels

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A continuous-time, discrete-state stochastic model of testosterone secretion in men is considered. Blood levels of testosterone in men fluctuate periodically with a period of 2–3 h. The deterministic model, on which the stochastic model considered here is based, is well studied and has been shown to have a globally stable fixed point. Thus, no sustained oscillations are possible in the deterministic case. However, the stochastic model does observe periodic, pulsatile behavior. This demonstrates how oscillations can occur due to a switching behavior dependent on the random degradation of testosterone molecules in the system. The Gillespie algorithm is used to simulate the hormone secretion model. Important parameters of the model are discussed and results from the model are compared to experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Becker, K.L. (Ed.), 2001. Principles and practice of endocrinology and metabolism, 3rd edition. Lippincott, Williams, and Wilkins, Philadelphia.

  • Cartwright, M., Husain, M., 1986. A model for the control of testosterone secretion. J. Theor. Biol. 123, 239–250.

    Article  PubMed  Google Scholar 

  • Elowitz, M.B., Levine, A.J., Siggia, E.D., Swain, P.S., 2002. Stochastic gene expression in a single cell. Science 297, 1183–1186.

    Article  PubMed  Google Scholar 

  • Enciso, G., Sontag, E.D., 2004. On the stability of a model of testosterone dynamics. J. Math. Biol. 49, 627–634.

    Article  PubMed  MATH  MathSciNet  Google Scholar 

  • Gillespie, D.T., 1976. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22, 403–434.

    Article  MathSciNet  Google Scholar 

  • Gillespie, D.T., 1977. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361.

    Article  Google Scholar 

  • Goodwin, B.C., 1965. Oscillatory behavior in enzymatic control processes. Adv. Enzyme Regul. 3, 425–438.

    Article  PubMed  Google Scholar 

  • Hormone. Encyclopedia Britannica, 2004. Encyclopedia Britannica Online: http://www.search.eb.com/eb/article?tocId=72724.

  • Keenan, D.M., Veldhuis, J.D., 1998. A biomathematical model of time-delayed feedback in the human male hypothalamic-pituitary-Leydig cell axis. Am. J. Physiol. 275, E157–E176.

    PubMed  Google Scholar 

  • Keenan, D.M., Sun, W., Veldhuis, J.D., 2000. A stochastic biomathematical model of the male reproductive hormone system. SIAM J. Appl. Math. 61, 934–965.

    Article  MATH  MathSciNet  Google Scholar 

  • Linstrom, P.J., Mallard, W.G. (Ed.), 2003. NIST Chemistry WebBook, NIST Standard Reference Database Number 69. National Institute of Standards and Technology, Gaithersburg, MD. Online: http://webbook.nist.gov.

  • Martin, C.R., 1985. Endocrine Physiology. Oxford University Press, New York.

    Google Scholar 

  • Murray, J.D., 2002. Mathematical Biology I: An Introduction, 3rd edition. Springer, New York.

    MATH  Google Scholar 

  • Naftolin, F., Judd, H.L., Yen, S.S.C., 1973. Pulsatile patterns of gonadotropins and testosterone in man: The effects of clomiphene with and without testosterone. J. Clin. Endocrinol. Metab. 36, 285–288.

    Article  PubMed  Google Scholar 

  • Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P., 1992. Numerical recipes in C: The art of scientific computing, 2nd edition. Cambridge University Press, Cambridge.

    Google Scholar 

  • Qian, H., Saffarian, S., Elson, E.L., 2002. Concentration fluctuations in a mesoscopic oscillating chemical reaction system. PNAS 99, 10376–10381.

    Article  PubMed  MATH  MathSciNet  Google Scholar 

  • Raser, J.M., O’Shea, E.K., 2004. Control of stochasticity in eukaryotic gene expression. Science, 304, 1811–1814.

    Article  PubMed  Google Scholar 

  • Shoelson, B., 2001. lombscargle.m. MATLAB Central File Exchange. Online: http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=993objectType=file.

  • Smith, W.R., 1980. Hypothalamic regulation of pituitary secretion of luteinizing hormone. II Feedback control of gonadotropin secretion. Bull. Math. Biol. 42, 57–78.

    Article  PubMed  MATH  Google Scholar 

  • Vilar, J.M.G., Kueh, H.Y., Barkai, N., Leibler, S., 2002. Mechanisms of noise-resistance in genetic oscillators. PNAS 99, 5988–5992.

    Article  PubMed  Google Scholar 

  • World Health Organization Expert Committee on Biological Standardization, 1989. Thirty-ninth Report. WHO Technical Report Series No. 786.

  • Yen, S.S.C., Jaffe, R.B., Barbieri, R.L., 1999. Reproductive Endocrinology: Physiology, Pathophysiology, and Clinical Management, 4th edition. Saunders, Philadelphia.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Heuett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heuett, W.J., Qian, H. A Stochastic Model of Oscillatory Blood Testosterone Levels. Bull. Math. Biol. 68, 1383–1399 (2006). https://doi.org/10.1007/s11538-006-9098-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-006-9098-4

Keywords

Navigation