Skip to main content

Advertisement

Log in

Image reconstruction for positron emission tomography using fuzzy nonlinear anisotropic diffusion penalty

  • Original Article
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Iterative algorithms such as maximum likelihood-expectation maximization (ML-EM) become the standard for the reconstruction in emission computed tomography. However, such algorithms are sensitive to noise artifacts so that the reconstruction begins to degrade when the number of iterations reaches a certain value. In this paper, we have investigated a new iterative algorithm for penalized-likelihood image reconstruction that uses the fuzzy nonlinear anisotropic diffusion (AD) as a penalty function. The proposed algorithm does not suffer from the same problem as that of ML-EM algorithm, and it converges to a low noisy solution even if the iteration number is high. The fuzzy reasoning instead of a nonnegative monotonically decreasing function was used to calculate the diffusion coefficients which control the whole diffusion. Thus, the diffusion strength is controlled by fuzzy rules expressed in a linguistic form. The proposed method makes use of the advantages of fuzzy set theory in dealing with uncertain problems and nonlinear AD techniques in removing the noise as well as preserving the edges. Quantitative analysis shows that the proposed reconstruction algorithm is suitable to produce better reconstructed images when compared with ML-EM, ordered subsets EM (OS-EM), Gaussian-MAP, MRP, TV-EM reconstructed images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ahn S, Fessler JA (2003) Globally convergent image reconstruction for emission tomography using relaxed ordered subsets algorithms. IEEE Trans Med Imaging 22:613–626

    Article  Google Scholar 

  2. Aja S, Alberola C, Ruiz J (2001) Fuzzy anisotropic diffusion for speckle filtering. In: IEEE proceedings of international conference acoustics, speech, and signal processing (ICASSP), pp 1261–1264

  3. Alenius S, Ruotsalainen U (2002) Generalization of median root prior reconstruction. IEEE Trans Med Imaging 21:1413–1420

    Article  Google Scholar 

  4. Anderson JMM, Srinivasan R, Mair BA, Votaw JR (2005) Accelerated penalized weighted least-squares and maximum likelihood algorithms for reconstructing transmission images from PET transmission data. IEEE Trans Med Imaging 24:337–351

    Article  Google Scholar 

  5. Black MJ, Sapiro G, Marimont DH, Heeger D (1998) Robust anisotropic diffusion. IEEE Trans Image Process 7:421–432

    Article  Google Scholar 

  6. Browne JA, Pierro ARDe (1996) A row-action alternative to the EM algorithm for maximizing likelihoods in emission tomography. IEEE Trans Med Imaging 15:687–699

    Article  Google Scholar 

  7. Byrne CL (1998) Accelerating the EMML algorithm and related iterative algorithms by rescaled block-iterative methods. IEEE Trans Image Process 7:100–109

    Article  MATH  MathSciNet  Google Scholar 

  8. Chen RC, Yu PT (1999) Fuzzy selection filters for image restoration with neural learning. IEEE Trans Signal Process 47:1446–1450

    Article  Google Scholar 

  9. Chlewicki W, Hermansin F, Hansen SB (2004) Noise reduction and convergence of Bayesian algorithms with blobs based on the Huber function and median root prior. Phys Med Biol 49:4717–4730

    Article  Google Scholar 

  10. Demirkaya O (2002) Anisotropic diffusion filtering of PET attenuation data to improve emission images. Phys Med Biol 47:271–278

    Article  Google Scholar 

  11. Demirkaya O (2004) Post-reconstruction filtering of positron emission tomography whole-body emission images and attenuation maps using nonlinear diffusion filtering. Acad Radiol 11:1105–1114

    Article  Google Scholar 

  12. Denisova NV (2004) Bayesian reconstruction in SPECT with entropy prior and iterative statistical regularization. IEEE Trans Nucl Sci 51:137–141

    Article  Google Scholar 

  13. Fessler JA (1994) Penalized weighted least-squares image reconstruction for positron emission tomography. IEEE Trans Med Imaging 13:290–300

    Article  Google Scholar 

  14. Fessler JA (1997) Grouped coordinate descent algorithms for robust edge-preserving image restoration. In: Proceedings of the SPIE 97, Im Recon Restor II, vol 3170, pp 184–194

  15. Fessler JA, Hero AO (1994) Space-alternating generalized expectation-maximization algorithm. IEEE Trans Signal Process 42:2664–2677

    Article  Google Scholar 

  16. Fessler JA, Ficaro EP, Clinthorne NH, Lange K (1997) Grouped-coordinate ascent algorithms for penalized-likelihood transmission image reconstruction. IEEE Trans Med Imaging 16:166–175

    Article  Google Scholar 

  17. Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of Images. IEEE Trans Pattern Anal Mach Intell 6:721–741

    Article  MATH  Google Scholar 

  18. Green PJ (1990) Bayesian reconstruction from emission tomography data using a modified EM algorithm. IEEE Trans Med Imaging 9:84–93

    Article  Google Scholar 

  19. Hsiao IT, Rangarajan A, Gindi G (2002) A provably convergent OS-EM like reconstruction algorithm for emission tomography. In: Proceedings of the SPIE 4684, medical imaging 2002: image proceedings, pp 10–19

  20. http://www.eecs.umich.edu/∼fessler/code/

  21. Hudson HM, Larkin RS (1994) Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 13:601–609

    Article  Google Scholar 

  22. Jin JS, Wang Y, Hiller J (2000) An adaptive nonlinear diffusion algorithm for filtering medical images. IEEE Trans Inform Technol Biomed 4:298–305

    Article  Google Scholar 

  23. Kadrmas DJ (2001) Statistically regulated and adaptive EM reconstruction for emission computed tomography. IEEE Trans Nucl Sci 48:790–798

    Article  Google Scholar 

  24. Kobashi S, Fujiki Y, Matsui M, Inoue N, Kondo K, Hata Y, Sawada T (2006) Interactive segmentation of the cerebral lobes with fuzzy inference in 3T MR image. IEEE Trans Syst Man Cybern B 37:74–86

    Article  Google Scholar 

  25. Mondal PP, Rajan K (2004) Image reconstruction by conditional entropy maximization for PET system. IEE Proc Vis Image Signal Process 151:352–355

    Article  Google Scholar 

  26. Mondal PP, Rajan K (2005) Fuzzy-rule-based image reconstruction for positron emission tomography. J Opt Soc Am A 22:1763–1771

    Article  MathSciNet  Google Scholar 

  27. Panin VY, Zeng GL, Gullberg GT (1999) Total variation regulated EM algorithm. IEEE Trans Nucl Sci 46:2202–2210

    Article  Google Scholar 

  28. Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 12:629–639

    Article  Google Scholar 

  29. Riddell C, Benali H, Buvat I (2004) Diffusion regularization for iterative reconstruction in emission tomography. IEEE Trans Nucl Sci 51:712–718

    Article  Google Scholar 

  30. Russo F (2002) An image enhancement techniques combining sharpening and noise reduction. IEEE Trans Instrum Meas 51:824–828

    Article  Google Scholar 

  31. Shepp LA, Vardi Y (1982) Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imag MI-1 2:113–122

    Article  Google Scholar 

  32. Sohlberg A, Ruotsalainen U, Watabe H, Iida H, Kuikka JT (2003) Accelerated median root prior reconstruction for pinhole single-photon emission tomography (SPET). Phys Med Biol 48:1957–1969

    Article  Google Scholar 

  33. Ville DVanDe, Nachtegael M, Weken DVD, Kerre EE, Philips W, Lemahieu I (2003) Noise reduction by fuzzy image filtering. IEEE Trans Fuzzy Syst 11:429–435

    Article  Google Scholar 

  34. Wang L-X, Mendel JM (1992) Generating fuzzy rules by learning from examples. IEEE Trans Syst Man Cybern 22:1411–1427

    MathSciNet  Google Scholar 

  35. Yuan B, Klir G (1997) Fuzzy sets and fuzzy logic. Prentice-Hall International, New Jersey

    MATH  Google Scholar 

  36. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Article  MATH  MathSciNet  Google Scholar 

  37. Zaidi H, Diaz-Gomez M, Boudraa AE, Slosman DO (2002) Fuzzy clustering-based segmented attenuation correction in whole-body PET imaging. Phys Med Biol 47:1143–1160

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Basic Research Program of China under grant No. 2003CB716102 and Program for New Century Excellent Talents in University under grant No. NCET-04-0477. It has been carried out in the frame of the CRIBs, a joint international laboratory associating Southeast University, the University of Rennes 1 and INSERM, with a grant provided by the French Consulate in Shanghai. We thank the anonymous referees for their careful review and valuable comments to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongqing Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, H., Shu, H., Zhou, J. et al. Image reconstruction for positron emission tomography using fuzzy nonlinear anisotropic diffusion penalty. Med Bio Eng Comput 44, 983–997 (2006). https://doi.org/10.1007/s11517-006-0115-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-006-0115-4

Keywords

Navigation