Skip to main content
Log in

On the geometry of metric measure spaces

  • Published:
Acta Mathematica

Abstract

We introduce and analyze lower (Ricci) curvature bounds \( \underline{{Curv}} {\left( {M,d,m} \right)} \) ⩾ K for metric measure spaces \( {\left( {M,d,m} \right)} \). Our definition is based on convexity properties of the relative entropy \( Ent{\left( { \cdot \left| m \right.} \right)} \) regarded as a function on the L 2-Wasserstein space of probability measures on the metric space \( {\left( {M,d} \right)} \). Among others, we show that \( \underline{{Curv}} {\left( {M,d,m} \right)} \) ⩾ K implies estimates for the volume growth of concentric balls. For Riemannian manifolds, \( \underline{{Curv}} {\left( {M,d,m} \right)} \) ⩾ K if and only if \( Ric_{M} {\left( {\xi ,\xi } \right)} \) ⩾ K \( {\left| \xi \right|}^{2} \) for all \( \xi \in TM \).

The crucial point is that our lower curvature bounds are stable under an appropriate notion of D-convergence of metric measure spaces. We define a complete and separable length metric D on the family of all isomorphism classes of normalized metric measure spaces. The metric D has a natural interpretation, based on the concept of optimal mass transportation.

We also prove that the family of normalized metric measure spaces with doubling constant ⩽ C is closed under D-convergence. Moreover, the family of normalized metric measure spaces with doubling constant ⩽ C and diameter ⩽ L is compact under D-convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandrov, A.D.: A theorem on triangles in a metric space and some applications. Trudy Mat. Inst. Steklov 38, 5–23 (1951) (Russian; translated into German and com-bined with more material in [2])

    Google Scholar 

  2. Alexandrov, A.D.: Über eine Verallgemeinerung der Riemannschen Geometrie. Schr. Forschungsinst. Math. Berlin 1, 33–84 (1957)

    Google Scholar 

  3. Ambrosio, L., Tilli, P.: Topics on Analysis in Metric Spaces. Oxford Lecture Series in Mathematics and its Applications, 25. Oxford University Press, Oxford (2004)

  4. Bakry, D., Émery, M.: Diffusions hypercontractives. In: Séminaire de Probabilités, XIX, 1983/84. Lecture Notes in Math., 1123, pp. 177–206. Springer, Berlin (1985)

    Google Scholar 

  5. Bobkov, S.G., Götze, F.: Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J. Funct. Anal. 163, 1–28 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brenier, Y.: Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math. 44, 375–417 (1991)

    MATH  MathSciNet  Google Scholar 

  7. Bridson, M.R., Haefliger, A.: Metric Spaces of Non-positive Curvature. Grundlehren der Mathematischen Wissenschaften, 319. Springer, Berlin (1999)

    Google Scholar 

  8. Burago, D., Burago, Y., Ivanov, S.: A Course in Metric Geometry. Graduate Studies in Mathematics, 33. Amer. Math. Soc., Providence, RI (2001)

    Google Scholar 

  9. Burago, Y., Gromov, M., Perelman, G.: A. D. Aleksandrov spaces with curvatures bounded below. Uspekhi Mat. Nauk 47(2), 3–51 (1992), 222 (Russian); English translation in Russian Math. Surveys 47(2), 1–58 (1992)

  10. Chavel, I.: Riemannian Geometry—a Modern Introduction. Cambridge Tracts in Mathematics, 108. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  11. Cheeger, J.: Differentiability of Lipschitz functions on metric measure spaces. Geom.Funct. Anal. 9, 428–517 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cheeger, J., Colding, T.H.: On the structure of spaces with Ricci curvature bounded below I, II, III. J. Differential Geom. 46, 406–480 (1997); Ibid, 54, 13–35 (2000); Ibid, 54, 37–74 (2000)

  13. Cordero-Erausquin, D., McCann, R.J., Schmuckenschläger, M.: A Riemannian interpolation inequality à la Borell, Brascamp and Lieb. Invent. Math. 146, 219–257 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Davies, E.B.: Heat Kernels and Spectral Theory. Cambridge Tracts in Mathematics, 92. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  15. Del Pino, M., Dolbeault, J.: Best constants for Gagliardo–Nirenberg inequalities and applications to nonlinear diffusions. J. Math. Pures Appl. 81, 847–875 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Dudley, R. M.: Real Analysis and Probability. Wadsworth & Brooks/Cole, Pacific Grove, CA (1989)

    Google Scholar 

  17. Feyel, D., Üstünel, A.S.: Monge–Kantorovitch measure transportation and Monge–Ampère equation on Wiener space. Probab. Theory Related Fields 128, 347–385 (2004)

    Article  MATH  Google Scholar 

  18. Feyel D., Üstünel, A.S.: The strong solution of the Monge–Ampère equation on the Wiener space for log-concave densities. C. R. Math. Acad. Sci. Paris, 339, 49–53 (2004)

    MATH  MathSciNet  Google Scholar 

  19. Fukaya, K.: Collapsing of Riemannian manifolds and eigenvalues of Laplace operator. Invent. Math. 87, 517–547 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  20. Gromov, M.: Groups of polynomial growth and expanding maps. Inst. Hautes Études Sci. Publ. Math. 53, 53–73 (1981)

    MATH  MathSciNet  Google Scholar 

  21. Gromov, M.: Structures Mètriques pour les Variètès Riemanniennes. Textes Mathèmatiques, 1

  22. Gromov, M.: Metric Structures for Riemannian and non-Riemannian Spaces. Progress in Mathematics, 152. Birkhäuser Boston, Boston, MA, Based on [21] (1999)

  23. Grove, K., Petersen, P.: Manifolds near the boundary of existence. J. Differential Geom. 33, 379–394 (1991)

    MATH  MathSciNet  Google Scholar 

  24. Hajłasz, P., Koskela, P.: Sobolev meets Poincarè. C. R. Acad. Sci. Paris Sèr. I Math. 320, 1211–1215 (1995)

    Google Scholar 

  25. Hajłasz, P., Koskela, P.: Sobolev met Poincaré. Mem. Amer. Math. Soc. 145 (2000)

  26. Heinonen, J.: Lectures on Analysis on Metric Spaces. Universitext. Springer, New York (2001)

    Google Scholar 

  27. Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 29, 1–17 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  28. Kantorovich, L.V.: On the translocation of masses. C. R. (Doklady) Acad. Sci. URSS 37, 199–201 (1942)

    MathSciNet  Google Scholar 

  29. Kantorovich, L.V., Rubinshteĭn, G.S.: On a functional space and certain extremum problems. Dokl. Akad. Nauk SSSR 115, 1058–1061 (1957)

    MATH  MathSciNet  Google Scholar 

  30. Kasue, A.: Convergence of Riemannian manifolds and Laplace operators II. Preprint (2004)

  31. Kasue, A., Kumura, H.: Spectral convergence of Riemannian manifolds. Tohoku Math. J. 46, 147–179 (1994)

    MATH  MathSciNet  Google Scholar 

  32. Kigami, J.: Analysis on Fractals. Cambridge Tracts in Mathematics, 143. Cambridge Uni-versity Press, Cambridge (2001)

    Google Scholar 

  33. Koskela, P.: Upper gradients and Poincaré inequalities. In: Lecture Notes on Analysis in Metric Spaces (Trento, 1999), pp. 55–69. Appunti Corsi Tenuti Docenti Sc. Scuola Norm. Sup., Pisa (2000)

  34. Kuwae, K., Shioya, T.: Convergence of spectral structures: a functional analytic theory and its applications to spectral geometry. Comm. Anal. Geom. 11, 599–673 (2003)

    MATH  MathSciNet  Google Scholar 

  35. Ledoux, M.: The Concentration of Measure Phenomenon. Mathematical Surveys and Monographs, 89. Amer. Math. Soc., Providence, RI (2001)

    Google Scholar 

  36. Li, P., Yau, S.-T.: On the parabolic kernel of the Schrödinger operator. Acta Math. 156, 153–201 (1986)

    Article  MathSciNet  Google Scholar 

  37. Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Preprint (2005)

  38. McCann, R.J.: Existence and uniqueness of monotone measure-preserving maps. Duke Math. J. 80, 309–323 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  39. McCann, R.J.: A convexity principle for interacting gases. Adv. Math. 128, 153–179 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  40. Monge, G.: Mémoire sur la théorie des déblais et des remblais. In: Histoire de l’Académie Royale des Sciences. Paris (1781)

  41. Otto, F.: The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial Differential Equations 26, 101–174 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  42. Otto, F., Villani, C.: Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173, 361–400 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  43. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. Preprint (2002)

  44. Plaut, C.: Metric spaces of curvature ⩾k. In: Handbook of Geometric Topology, pp. 819–898. North-Holland, Amsterdam (2002)

    Google Scholar 

  45. Rachev, S.T., Rüschendorf, L.: Mass Transportation Problems. Vol. I. Probability and its Applications (New York). Springer, New York (1998)

    Google Scholar 

  46. von Renesse, M.-K., Sturm, K.-T.: Transport inequalities, gradient estimates, entropy, and Ricci curvature. Comm. Pure Appl. Math. 58, 923–940 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  47. Saloff-Coste, L.: Aspects of Sobolev-type Inequalities. London Math. Soc. Lecture Note Series, 289. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  48. Sturm, K.-T.: Diffusion processes and heat kernels on metric spaces. Ann. Probab. 26, 1–55 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  49. Sturm, K.-T.: Metric spaces of lower bounded curvature. Exposition. Math. 17, 35–47 (1999)

    MATH  MathSciNet  Google Scholar 

  50. Sturm, K.-T.: Probability measures on metric spaces of nonpositive curvature. In: Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces (Paris, 2002), pp. 357–390. Contemp. Math., 338. Amer. Math. Soc., Providence, RI (2003)

    Google Scholar 

  51. Sturm, K.-T.: Convex functionals of probability measures and nonlinear diffusions on manifolds. J. Math. Pures Appl. 84, 149–168 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  52. Sturm, K.-T.: Generalized Ricci bounds and convergence of metric measure spaces. C. R. Math. Acad. Sci. Paris 340, 235–238 (2005)

    MATH  MathSciNet  Google Scholar 

  53. Sturm, K.-T.: On the geometry of metric measure spaces. II. Acta Math. 196, 133–177 (2006)

    Google Scholar 

  54. Talagrand, M.: Concentration of measure and isoperimetric inequalities in product spaces. Inst. Hautes Études Sci. Publ. Math., 73–205 (1995)

  55. Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics, 58. Amer. Math. Soc., Providence, RI (2003)

    Google Scholar 

  56. Wasserstein [Vasershtein], L.N.: Markov processes over denumerable products of spaces describing large system of automata. Problemy Peredači Informacii 5(3), 64–72 (1969) (Russian). English translation in Problems of Information Transmission 5(3), 47–52 (1969)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl-Theodor Sturm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sturm, KT. On the geometry of metric measure spaces. Acta Math 196, 65–131 (2006). https://doi.org/10.1007/s11511-006-0002-8

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11511-006-0002-8

Keywords

Navigation