Skip to main content
Log in

Effect of the Number of Zones in a One-Dimensional Plasmonic Zone Plate Lens: Simulation and Experiment

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A 1D plasmonic zone plate lens (PZPL) consisting of nano-slits within a metal film introduces a phase delay distribution across the planar device surface by a modulation of the slit widths and positions to achieve light focusing. Using the finite-difference time-domain method, the number of zones is found to be a crucial factor for a well-controlled focal length, i.e. at least three zones are necessary for a PZPL exhibiting a focal length in agreement with the design. This conclusion is confirmed by confocal scanning optical microscopy on PZPLs patterned in an aluminium film. In addition, subwavelength light focusing is demonstrated both theoretically and experimentally in a PZPL. A larger PZPL, i.e. more zones, shows a higher resolution. A full full-width half-maximum of 0.37λ in the focal plane is shown theoretically in a PZPL with seven zones. A comparison between the PZPL and the plasmonic Fresnel zone plate shows that PZPLs have a higher contrast at the focus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lezec HJ, Degiron A, Devaux E, Linke RA, Martin-Moreno L, Garcia-Vidal FJ, Ebbesen TW (2002) Science 297:820–822

    Article  CAS  Google Scholar 

  2. Sun Z, Kim HK (2004) Appl Phys Lett 85:642–644

    Article  CAS  Google Scholar 

  3. Shi H, Wang C, Du C, Luo X, Dong X, Gao H (2005) Opt. Express 13:6815–6820

    Article  Google Scholar 

  4. Sun Z (2006) Appl Phys Lett 89:261119

    Article  Google Scholar 

  5. Fu Y, Zhou W, Lim LEN, Du CL, Luo XG (2007) Appl Phys Lett 91:061124

    Article  Google Scholar 

  6. Fu Y, Du C, Zhou W, Lim L (2008) Research Letter in Physics 2008:148505

    Google Scholar 

  7. Chen Y, Zhou C, Luo X, Du C (2008) Opt Lett 33:753–755

    Article  Google Scholar 

  8. Xu T, Wang C, Du C, Luo X (2008) Opt Express 16:4753–4759

    Article  Google Scholar 

  9. Mote RG, Yu SF, Ng BK, Zhou W, Lau SP (2008) Opt Express 16:9554–9564

    Article  Google Scholar 

  10. Verslegers L, Catrysse PB, Yu Z, White JS, Barnard ES, Brongersma ML, Fan S (2009) Nano Lett 9:235–238

    Article  CAS  Google Scholar 

  11. Jung YJ, Park D, Koo S, Yu S, Park N (2009) Opt Express 17:18852–18857

    Article  CAS  Google Scholar 

  12. Verslegers L, Catrysse PB, Yu Z, Shin W, Ruan Z, Fan S (2010) Opt Lett 35:844–846

    Article  Google Scholar 

  13. Lin L, Goh XM, McGuinness LP, Roberts A (2010) Nano Lett 10:1936–1940

    Article  CAS  Google Scholar 

  14. Fu Y, Liu Y, Zhou X, Xu Z, Fang F (2010) Opt Express 18:3438–3443

    Article  Google Scholar 

  15. Goh XM, Lin L, Roberts A (2010) Opt Express 18:11683–11688

    Article  CAS  Google Scholar 

  16. Wang J, Zhou W (2010) Plasmonics 5. doi:10.1007/s11468-010-9147-6

  17. Chen Q, Cumming DRS (2010) Opt Express 18:14788–14793

    Article  CAS  Google Scholar 

  18. Lee B, Kim S, Kim H, Lim Y (2010) Prog Quantum Electron 34:47–87

    Article  CAS  Google Scholar 

  19. Fu Y, Zhou X (2010) Plasmonics 5:287–310

  20. Ruffieux P, Scharf T, Herzig HP, Völkel R, Weoble KJ (2006) Opt Express 14:4687–4694

    Article  Google Scholar 

  21. Gordon R, Brolo AG (2005) Opt Express 13:1933–1938

    Article  Google Scholar 

  22. Lumerical FDTD solution. http://www.lumerical.com/

  23. Stigliani D, Mittra R, Semonin R (1967) J Opt Soc Am 57:610–613

    Article  Google Scholar 

  24. Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Nature 391:667–669

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The author appreciates the help of Dr. Tomas Dieing and Dr. Elena Bailo from WITech GmbH for their support with confocal scanning optical microscopy. He also thanks Prof. David Cumming for his useful suggestion. This project is funded by a grant from the UK EPSRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Q. Effect of the Number of Zones in a One-Dimensional Plasmonic Zone Plate Lens: Simulation and Experiment. Plasmonics 6, 75–82 (2011). https://doi.org/10.1007/s11468-010-9171-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-010-9171-6

Keywords

Navigation