Skip to main content
Log in

Nanomaterials for electrochemical energy storage

  • Review Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

The development of nanotechnology in the past two decades has generated great capability of controlling materials at the nanometer scale and has enabled exciting opportunities to design materials with desirable electronic, ionic, photonic, and mechanical properties. This development has also contributed to the advance in energy storage, which is a critical technology in this century. In this article, we will review how the rational design of nanostructured materials has addressed the challenges of batteries and electrochemical capacitors and led to high-performance electrochemical energy storage devices. Four specific material systems will be discussed: i) nanostructured alloy anodes for Li-batteries, ii) nanostructured sulfur cathodes for Li-batteries, iii) nanoporous openframework battery electrodes, and iv) nanostructured electrodes for electrochemical capacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Chu and A. Majumdar, Opportunities and challenges for a sustainable energy future, Nature, 2012, 488(7411): 294

    ADS  Google Scholar 

  2. J. M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 2001, 414(6861): 359

    ADS  Google Scholar 

  3. M. Armand and J. M. Tarascon, Building better batteries, Nature, 2008, 451(7179): 652

    ADS  Google Scholar 

  4. Z. Yang, J. Zhang, M. C. W. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon, and J. Liu, Electrochemical energy storage for green grid, Chem. Rev., 2011, 111(5): 3577

    Google Scholar 

  5. B. Dunn, H. Kamath, and J. M. Tarascon, Electrical energy storage for the grid: A battery of choices, Science, 2011, 334(6058): 928

    ADS  Google Scholar 

  6. A. S. Aric`o, P. Bruce, B. Scrosati, J. M. Tarascon, and W. van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices, Nat. Mater., 2005, 4(5): 366

    ADS  Google Scholar 

  7. Y. G. Guo, J. S. Hu, and L. J. Wan, Nanostructured materials for electrochemical energy conversion and storage devices, Adv. Mater., 2008, 20(15): 2878

    Google Scholar 

  8. W. J. Zhang, A review of the electrochemical performance of alloy anodes for lithium-ion batteries, J. Power Sources, 2011, 196(1): 13

    Google Scholar 

  9. P. G. Bruce, S. A. Freunberger, L. J. Hardwick, and J. M. Tarascon, Li-O2 and Li-S batteries with high energy storage, Nat. Mater., 2012, 11(1): 19

    ADS  Google Scholar 

  10. A. N. Dey, Electrochemical alloying of lithium in organic electrolytes, J. Electrochem. Soc., 1971, 118(10): 1547

    Google Scholar 

  11. B. A. Boukamp, All-solid lithium electrodes with mixedconductor matrix, J. Electrochem. Soc., 1981, 128(4): 725

    Google Scholar 

  12. T. D. Hatchard and J. R. Dahn, In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon, J. Electrochem. Soc., 2004, 151(6): A838

    Google Scholar 

  13. M. N. Obrovac and L. Christensen, Structural changes in silicon anodes during lithium insertion/extraction, Electrochem. Solid-State Lett., 2004, 7(5): A93

    Google Scholar 

  14. M. T. McDowell, S. W. Lee, W. D. Nix, and Y. Cui, 25th anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries, Adv. Mater., 2013, 25(36): 4966

    Google Scholar 

  15. L. Y. Beaulieu, K. W. Eberman, R. L. Turner, L. J. Krause, and J. R. Dahn, Colossal reversible volume changes in lithium alloys, Electrochem. Solid-State Lett., 2001, 4(9): A137

    Google Scholar 

  16. S. W. Lee, M. T. McDowell, L. A. Berla, W. D. Nix, and Y. Cui, Fracture of crystalline silicon nanopillars during electrochemical lithium insertion, Proc. Natl. Acad. Sci. USA, 2012, 109(11): 4080

    Google Scholar 

  17. J. H. Ryu, J. W. Kim, Y. E. Sung, and S. M. Oh, Failure modes of silicon powder negative electrode in lithium secondary batteries, Electrochem. Solid-State Lett., 2004, 7(10): A306

    Google Scholar 

  18. J. O. Besenhard, J. Yang, and M. Winter, Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? J. Power Sources, 1997, 68(1): 87

    ADS  Google Scholar 

  19. H. Wu, G. Chan, J. W. Choi, I. Ryu, Y. Yao, M. T. Mc- Dowell, S. W. Lee, A. Jackson, Y. Yang, L. Hu, and Y. Cui, Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control, Nat. Nanotechnol., 2012, 7(5): 310

    ADS  Google Scholar 

  20. C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, and Y. Cui, High-performance lithium battery anodes using silicon nanowires, Nat. Nanotechnol., 2008, 3(1): 31

    ADS  Google Scholar 

  21. H. Wu and Y. Cui, Designing nanostructured Si anodes for high energy lithium ion batteries, Nano Today, 2012, 7(5): 414

    Google Scholar 

  22. C. K. Chan, R. N. Patel, M. J. O’Connell, B. A. Korgel, and Y. Cui, Solution-grown silicon nanowires for lithium-ion battery anodes, ACS Nano, 2010, 4(3): 1443

    Google Scholar 

  23. C. K. Chan, X. F. Zhang, and Y. Cui, High capacity Li ion battery anodes using Ge nanowires, Nano Lett., 2008, 8(1): 307

    ADS  Google Scholar 

  24. P. Meduri, C. Pendyala, V. Kumar, G. U. Sumanasekera, and M. K. Sunkara, Hybrid tin oxide nanowires as stable and high capacity anodes for Li-ion batteries, Nano Lett., 2009, 9(2): 612

    ADS  Google Scholar 

  25. C. K. Chan, R. Ruffo, S. S. Hong, and Y. Cui, Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes, J. Power Sources, 2009, 189(2): 1132

    Google Scholar 

  26. R. Ruffo, S. S. Hong, C. K. Chan, R. A. Huggins, and Y. Cui, Impedance analysis of silicon nanowire lithium ion battery anodes, J. Phys. Chem. C, 2009, 113(26): 11390

    Google Scholar 

  27. C. K. Chan, R. Ruffo, S. S. Hong, R. A. Huggins, and Y. Cui, Structural and electrochemical study of the reaction of lithium with silicon nanowires, J. Power Sources, 2009, 189(1): 34

    Google Scholar 

  28. S. Misra, N. Liu, J. Nelson, S. S. Hong, Y. Cui, and M. F. Toney, In situ X-ray diffraction studies of (de)lithiation mechanism in silicon nanowire anodes, ACS Nano, 2012, 6(6): 5465

    Google Scholar 

  29. J. W. Choi, J. McDonough, S. Jeong, J. S. Yoo, C. K. Chan, and Y. Cui, Stepwise nanopore evolution in one-dimensional nanostructures, Nano Lett., 2010, 10(4): 1409

    ADS  Google Scholar 

  30. L. F. Cui, Y. Yang, C. M. Hsu, and Y. Cui, Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries, Nano Lett., 2009, 9(9): 3370

    ADS  Google Scholar 

  31. L. F. Cui, R. Ruffo, C. K. Chan, H. Peng, and Y. Cui, Crystalline-amorphous coretshell silicon nanowires for high capacity and high current battery electrodes, Nano Lett., 2009, 9(1): 491

    ADS  Google Scholar 

  32. X. Chen, K. Gerasopoulos, J. Guo, A. Brown, C. Wang, R. Ghodssi, and J. N. Culver, Virus-enabled silicon anode for lithium-ion batteries, ACS Nano, 2010, 4(9): 5366

    Google Scholar 

  33. S. Zhou, X. Liu, and D. Wang, Si/TiSi2 Heteronanostructures as high-capacity anode material for li ion batteries, Nano Lett., 2010, 10(3): 860

    MathSciNet  ADS  Google Scholar 

  34. Y. Yao, K. Huo, L. Hu, N. Liu, J. J. Cha, M. T. McDowell, P. K. Chu, and Y. Cui, Highly conductive, mechanically robust, and electrochemically inactive TiC/C nanofiber scaffold for high-performance silicon anode batteries, ACS Nano, 2011, 5(10): 8346

    Google Scholar 

  35. H. Zhang and P. V. Braun, Three-dimensional metal scaffold supported bicontinuous silicon battery anodes, Nano Lett., 2012, 12(6): 2778

    Google Scholar 

  36. R. Huang, X. Fan, W. Shen, and J. Zhu, Carbon-coated silicon nanowire array films for high-performance lithium-ion battery anodes, Appl. Phys. Lett., 2009, 95(13): 133119

    ADS  Google Scholar 

  37. L. Su, Z. Zhou, and M. Ren, Core double-shell Si@SiO2@C nanocomposites as anode materials for Li-ion batteries, Chem. Commun., 2010, 46(15): 2590

    Google Scholar 

  38. A. Vlad, A. L. M. Reddy, A. Ajayan, N. Singh, J. F. Gohy, S. Melinte, and P. M. Ajayan, Roll up nanowire battery from silicon chips, Proc. Natl. Acad. Sci. USA, 2012, 109(38): 15168

    ADS  Google Scholar 

  39. A. Kohandehghan, P. Kalisvaart, K. Cui, M. Kupsta, E. Memarzadeh, and D. Mitlin, Silicon nanowire lithium-ion battery anodes with ALD deposited TiN coatings demonstrate a major improvement in cycling performance, J. Mater. Chem. A, 2013, 1: 12850

    Google Scholar 

  40. Y. Yao, N. Liu, M. T. McDowell, M. Pasta, and Y. Cui, Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings, Energy Environ. Sci., 2012, 5: 7927

    Google Scholar 

  41. L. Su, Y. Jing, and Z. Zhou, Li ion battery materials with core-shell nanostructures, Nanoscale, 2011, 3(10): 3967

    ADS  Google Scholar 

  42. L. F. Cui, L. Hu, H. Wu, J. W. Choi, and Y. Cui, Inorganic glue enabling high performance of silicon particles as lithium ion battery anode, J. Electrochem. Soc., 2011, 158(5): A592

    Google Scholar 

  43. L. Hu, H. Wu, S. S. Hong, L. Cui, J. R. McDonough, S. Bohy, and Y. Cui, Si nanoparticle-decorated Si nanowire networks for Li-ion battery anodes, Chem. Commun., 2011, 47(1): 367

    Google Scholar 

  44. A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala, and G. Yushin, High-performance lithium-ion anodes using a hierarchical bottom-up approach, Nat. Mater., 2010, 9(4): 353

    ADS  Google Scholar 

  45. D. S. Jung, T. H. Hwang, S. B. Park, and J. W. Choi, Spray drying method for large-scale and high-performance silicon negative electrodes in Li-ion batteries, Nano Lett., 2013, 13(5): 2092

    ADS  Google Scholar 

  46. A. Magasinski, B. Zdyrko, I. Kovalenko, B. Hertzberg, R. Burtovyy, C. F. Huebner, T. F. Fuller, I. Luzinov, and G. Yushin, Toward efficient binders for Li-ion battery Sibased anodes: Polyacrylic acid, ACS Appl. Mater. Interfaces, 2010, 2(11): 3004

    Google Scholar 

  47. I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov, and G. Yushin, A major constituent of brown algae for use in high-capacity Li-ion batteries, Science, 2011, 334(6052): 75

    ADS  Google Scholar 

  48. G. Liu, S. Xun, N. Vukmirovic, X. Song, P. Olalde-Velasco, H. Zheng, V. S. Battaglia, L. Wang, and W. Yang, Polymers with tailored electronic structure for high capacity lithium battery electrodes, Adv. Mater., 2011, 23(40): 4679

    Google Scholar 

  49. H. Wu, G. Yu, L. Pan, N. Liu, M. T. McDowell, Z. Bao, and Y. Cui, Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles, Nat. Commun., 2013, 4: 1943

    ADS  Google Scholar 

  50. M. H. Park, M. G. Kim, J. Joo, K. Kim, J. Kim, S. Ahn, Y. Cui, and J. Cho, Silicon nanotube battery anodes, Nano Lett., 2009, 9(11): 3844

    Google Scholar 

  51. T. Song, J. Xia, J. H. Lee, D. H. Lee, M. S. Kwon, J. M. Choi, J. Wu, S. K. Doo, H. Chang, W. I. Park, D. S. Zang, H. Kim, Y. Huang, K. C. Hwang, J. A. Rogers, and U. Paik, Arrays of sealed silicon nanotubes as anodes for lithium ion batteries, Nano Lett., 2010, 10(5): 1710

    ADS  Google Scholar 

  52. Y. Yao, M. T. McDowell, I. Ryu, H. Wu, N. Liu, L. Hu, W. D. Nix, and Y. Cui, Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life, Nano Lett., 2011, 11(7): 2949

    Google Scholar 

  53. M. H. Park, Y. Cho, K. Kim, J. Kim, M. Liu, and J. Cho, Germanium nanotubes prepared by using the Kirkendall effect as anodes for high-rate lithium batteries, Angew. Chem. Int. Ed., 2011, 123(41): 9821

    Google Scholar 

  54. S. Han, B. Jang, T. Kim, S. M. Oh, and T. Hyeon, Simple synthesis of hollow tin dioxide microspheres and their application to lithium-ion battery anodes, Adv. Funct. Mater., 2005, 15(11): 1845

    Google Scholar 

  55. X. W. Lou, Y. Wang, C. Yuan, J. Y. Lee, and L. A. Archer, Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity, Adv. Mater., 2006, 18(17): 2325

    Google Scholar 

  56. H. Kim, B. Han, J. Choo, and J. Cho, Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries, Angew. Chem. Int. Ed., 2008, 120(52): 10305

    Google Scholar 

  57. Y. Yu, L. Gu, C. Zhu, S. Tsukimoto, P. A. van Aken, and J. Maier, Reversible storage of lithium in silver-coated threedimensional macroporous silicon, Adv. Mater., 2010, 22(20): 2247

    Google Scholar 

  58. J. Cho, Porous Si anode materials for lithium rechargeable batteries, J. Mater. Chem., 2010, 20(20): 4009

    Google Scholar 

  59. H. Jia, P. Gao, J. Yang, J. Wang, Y. Nuli, and Z. Yang, Novel three-dimensional mesoporous silicon for high power lithium-ion battery anode material, Adv. Energy Mater., 2011, 1(6): 1036

    Google Scholar 

  60. D. Chen, X. Mei, G. Ji, M. Lu, J. Xie, J. Lu, and J. Y. Lee, Reversible lithium-ion storage in silver-treated nanoscale hollow porous silicon particles, Angew. Chem. Int. Ed., 2012, 51(10): 2409

    Google Scholar 

  61. J. Zhu, C. Gladden, N. Liu, Y. Cui, and X. Zhang, Nanoporous silicon networks as anodes for lithium ion batteries, Phys. Chem. Chem. Phys., 2013, 15(2): 440

    Google Scholar 

  62. M. Ge, J. Rong, X. Fang, and C. Zhou, Porous doped silicon nanowires for lithium ion battery anode with long cycle life, Nano Lett., 2012, 12(5): 2318

    ADS  Google Scholar 

  63. Z. Bao, M. R. Weatherspoon, S. Shian, Y. Cai, P. D. Graham, S. M. Allan, G. Ahmad, M. B. Dickerson, B. C. Church, Z. Kang, H. W. III Abernathy, C. J. Summers, M. Liu, and K. H. Sandhage, Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas, Nature, 2007, 446(7132): 172

    ADS  Google Scholar 

  64. W. Stöber, A. Fink, and E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range, J. Colloid Interface Sci., 1968, 26(1): 62

    Google Scholar 

  65. D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, and G. D. Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, Science, 1998, 279(5350): 548

    ADS  Google Scholar 

  66. C. O. Tuck, E. Pérez, I. T. Horváth, R. A. Sheldon, and M. Poliakoff, Valorization of biomass: Deriving more value from waste, Science, 2012, 337(6095): 695

    ADS  Google Scholar 

  67. N. Liu, K. Huo, M. T. McDowell, J. Zhao, and Y. Cui, Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes, Sci. Rep., 2013, 3: 1919

    ADS  Google Scholar 

  68. A. Xing, S. Tian, H. Tang, D. Losic, and Z. Bao, Mesoporous silicon engineered by the reduction of biosilica from rice husk as a high-performance anode for lithium-ion batteries, RSC Adv., 2013, 3(26): 10145

    Google Scholar 

  69. D. S. Jung, M. H. Ryou, Y. J. Sung, S. B. Park, and J. W. Choi, Recycling rice husks for high-capacity lithium battery anodes, Proc. Natl. Acad. Sci. USA, 2013, 110(30): 12229

    ADS  Google Scholar 

  70. R. Yi, F. Dai, M. L. Gordin, S. Chen, and D. Wang, Microsized Si-C composite with interconnected nanoscale building blocks as high-performance anodes for practical application in lithium-ion batteries, Adv. Energy Mater., 2013, 3(3): 295

    Google Scholar 

  71. K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, Chem. Rev., 2004, 104(10): 4303

    Google Scholar 

  72. P. Verma, P. Maire, and P. Novák, A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries, Electrochim. Acta, 2010, 55(22): 6332

    Google Scholar 

  73. D. Aurbach, Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries, J. Power Sources, 2000, 89(2): 206

    ADS  Google Scholar 

  74. N. Liu, L. Hu, M. T. McDowell, A. Jackson, and Y. Cui, Prelithiated silicon nanowires as an anode for lithium ion batteries, ACS Nano, 2011, 5(8): 6487

    Google Scholar 

  75. V. Etacheri, O. Haik, Y. Goffer, G. A. Roberts, I. C. Stefan, R. Fasching, and D. Aurbach, Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes, Langmuir, 2012, 28(1): 965

    Google Scholar 

  76. V. Etacheri, U. Geiger, Y. Gofer, G. A. Roberts, I. C. Stefan, R. Fasching, and D. Aurbach, Exceptional electrochemical performance of Si-nanowires in 1,3-dioxolane solutions: A surface chemical investigation, Langmuir, 2012, 28(14): 6175

    Google Scholar 

  77. N. Liu, H. Wu, M. T. McDowell, Y. Yao, C. Wang, and Y. Cui, A yolk-shell design for stabilized and scalable li-ion battery alloy anodes, Nano Lett., 2012, 12(6): 3315

    Google Scholar 

  78. B. Hertzberg, A. Alexeev, and G. Yushin, Deformations in Si-Li anodes upon electrochemical alloying in nano-confined space, J. Am. Chem. Soc., 2010, 132(25): 8548

    Google Scholar 

  79. H. Wu, G. Zheng, N. Liu, T. J. Carney, Y. Yang, and Y. Cui, Engineering empty space between Si nanoparticles for lithium-ion battery anodes, Nano Lett., 2012, 12(2): 904

    ADS  Google Scholar 

  80. X. Li, P. Meduri, X. Chen, W. Qi, M. H. Engelhard, W. Xu, F. Ding, J. Xiao, W. Wang, C. Wang, J. G. Zhang, and J. Liu, Hollow core-shell structured porous Si-C nanocomposites for Li-ion battery anodes, J. Mater. Chem., 2012, 22(22): 11014

    Google Scholar 

  81. B. Wang, X. Li, X. Zhang, B. Luo, Y. Zhang, and L. Zhi, Contact-engineered and void-involved silicon/carbon nanohybrids as lithium-ion-battery anodes, Adv. Mater., 2013, 25(26): 3560

    Google Scholar 

  82. K. Karki, Y. Zhu, Y. Liu, C. F. Sun, L. Hu, Y. Wang, C. Wang, and J. Cumings, Hoop-strong nanotubes for battery electrodes, ACS Nano, 2013, 7(9): 8295

    Google Scholar 

  83. X. W. Lou, C. M. Li, and L. A. Archer, Designed synthesis of coaxial SnO2@carbon hollow nanospheres for highly reversible lithium storage, Adv. Mater., 2009, 21(24): 2536

    Google Scholar 

  84. J. Y. Huang, L. Zhong, C. M. Wang, J. P. Sullivan, W. Xu, L. Q. Zhang, S. X. Mao, N. S. Hudak, X. H. Liu, A. Subramanian, H. Fan, L. Qi, A. Kushima, and J. Li, In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode, Science, 2010, 330(6010): 1515

    ADS  Google Scholar 

  85. M. T. McDowell, I. Ryu, S. W. Lee, C. Wang, W. D. Nix, and Y. Cui, Studying the kinetics of crystalline silicon nanoparticle lithiation with in situ transmission electron microscopy, Adv. Mater., 2012, 24(45): 6034

    Google Scholar 

  86. Y. Yang, G. Zheng, and Y. Cui, Nanostructured sulfur cathodes, Chem. Soc. Rev., 2013, 42(7): 3018

    Google Scholar 

  87. A. Manthiram, Y. Fu, and Y. S. Su, Challenges and prospects of lithium-sulfur batteries, Acc. Chem. Res., 2013, 46(5): 1125

    Google Scholar 

  88. Y. V. Mikhaylik and J. R. Akridge, Polysulfide shuttle study in the Li/S battery system, J. Electrochem. Soc., 2004, 151(11): A1969

    Google Scholar 

  89. X. L. Ji and L. F. Nazar, Advances in Li-S batteries, J. Mater. Chem., 2010, 20(44): 9821

    Google Scholar 

  90. C. Barchasz, J. C. Lepretre, F. Alloin, and S. Patoux, New insights into the limiting parameters of the Li/S rechargeable cell, J. Power Sources, 2012, 199: 322

    Google Scholar 

  91. J. Shim, K. A. Striebel, and E. J. Cairns, The lithium/sulfur rechargeable cell, J. Electrochem. Soc., 2002, 149(10): A1321

    Google Scholar 

  92. X. Ji, K. T. Lee, and L. F. Nazar, A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries, Nat. Mater., 2009, 8(6): 500

    ADS  Google Scholar 

  93. N. Jayaprakash, J. Shen, S. S. Moganty, A. Corona, and L. A. Archer, Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries, Angew. Chem. Int. Ed., 2011, 50(26): 5904

    Google Scholar 

  94. J. Kim, D. J. Lee, H. G. Jung, Y. K. Sun, J. Hassoun, and B. Scrosati, An advanced lithium-sulfur battery, Adv. Funct. Mater., 2013, 23(8): 1076

    Google Scholar 

  95. J. Guo, Y. Xu, and C. Wang, Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries, Nano Lett., 2011, 11(10): 4288

    ADS  Google Scholar 

  96. L. Ji, M. Rao, S. Aloni, L. Wang, E. J. Cairns, and Y. Zhang, Porous carbon nanofiber-sulfur composite electrodes for lithium/sulfurcells, Energy Environ. Sci., 2011, 4: 5053

    Google Scholar 

  97. C. Zu, Y. Fu, and A. Manthiram, Highly reversible Li/dissolved polysulfide batteries with binder-free carbon nanofiber electrodes, J. Mater. Chem. A, 2013, 1(35): 10362

    Google Scholar 

  98. R. Elazari, G. Salitra, A. Garsuch, A. Panchenko, and D. Aurbach, Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries, Adv. Mater., 2011, 23(47): 5641

    Google Scholar 

  99. Y. S. Su and A. Manthiram, Lithium-sulfur batteries with a microporous carbon paper as a bifunctional interlayer, Nat. Commun., 2012, 3: 1166

    ADS  Google Scholar 

  100. B. Zhang, C. Lai, Z. Zhou, and X. P. Gao, Preparation and electrochemical properties of sulfur-acetylene black composites as cathode materials, Electrochim. Acta, 2009, 54(14): 3708

    Google Scholar 

  101. C. Lai, X. P. Gao, B. Zhang, T. Y. Yan, and Z. Zhou, Synthesis and Electrochemical Performance of Sulfur/Highly Porous Carbon Composites, J. Phys. Chem. C, 2009, 113(11): 4712

    Google Scholar 

  102. L. Ji, M. Rao, H. Zheng, L. Zhang, Y. Li, W. Duan, J. Guo, E. J. Cairns, and Y. Zhang, Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells, J. Am. Chem. Soc., 2011, 133(46): 18522

    Google Scholar 

  103. H. Wang, Y. Yang, Y. Liang, J. T. Robinson, Y. Li, A. Jackson, Y. Cui, and H. Dai, Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability, Nano Lett., 2011, 11(7): 2644

    Google Scholar 

  104. G. Zheng, Y. Yang, J. J. Cha, S. S. Hong, and Y. Cui, Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries, Nano Lett., 2011, 11(10): 4462

    ADS  Google Scholar 

  105. G. Zheng, Q. Zhang, J. J. Cha, Y. Yang, W. Li, Z. W. Seh, and Y. Cui, Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries, Nano Lett., 2013, 13(3): 1265

    ADS  Google Scholar 

  106. H. Yao, G. Zheng, W. Li, M. T. McDowell, Z. W. Seh, N. Liu, Z. Lu, and Y. Cui, Crab shells as sustainable templates from nature for nanostructured battery electrodes, Nano Lett., 2013, 13(7): 3385

    ADS  Google Scholar 

  107. Y. Yang, G. Yu, J. J. Cha, H. Wu, M. Vosgueritchian, Y. Yao, Z. Bao, and Y. Cui, Improving the performance of lithium-sulfur batteries by conductive polymer coating, ACS Nano, 2011, 5(11): 9187

    Google Scholar 

  108. X. Ji, S. Evers, R. Black, and L. F. Nazar, Stabilizing lithium-sulphur cathodes using polysulphide reservoirs, Nat. Commun., 2011, 2: 325

    ADS  Google Scholar 

  109. S. Evers, T. Yim, and L. F. Nazar, Understanding the nature of absorption/adsorption in nanoporous polysulfide sorbents for the Li-S battery, J. Phys. Chem. C, 2012, 116(37): 19653

    Google Scholar 

  110. J. Schuster, G. He, B. Mandlmeier, T. Yim, K. T. Lee, T. Bein, and L. F. Nazar, Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries, Angew. Chem. Int. Ed., 2012, 51(15): 3591

    Google Scholar 

  111. J. Nelson, S. Misra, Y. Yang, A. Jackson, Y. Liu, H. Wang, H. Dai, J. C. Andrews, Y. Cui, and M. F. Toney, In Operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries, J. Am. Chem. Soc., 2012, 134(14): 6337

    Google Scholar 

  112. Z. W. Seh, W. Li, J. J. Cha, G. Zheng, Y. Yang, M. T. McDowell, P. C. Hsu, and Y. Cui, Sulphur-TiO2 yolkshell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries, Nat. Commun., 2013, 4: 1331

    Google Scholar 

  113. W. Li, G. Zheng, Y. Yang, Z. W. Seh, N. Liu, and Y. Cui, High-performance hollow sulfur nanostructured battery cathode through a scalable, room temperature, one-step, bottom-up approach, Proc. Natl. Acad. Sci. USA, 2013, 110(18): 7148

    ADS  Google Scholar 

  114. R. Demir-Cakan, M. Morcrette, F. Nouar, C. Davoisne, T. Devic, D. Gonbeau, R. Dominko, C. Serre, G. Férey, and J. M. Tarascon, Cathode composites for Li-S batteries via the use of oxygenated porous architectures, J. Am. Chem. Soc., 2011, 133(40): 16154

    Google Scholar 

  115. L. Xiao, Y. Cao, J. Xiao, B. Schwenzer, M. H. Engelhard, L. V. Saraf, Z. Nie, G. J. Exarhos, and J. Liu, A soft approach to encapsulate sulfur: Polyaniline nanotubes for lithiumsulfur batteries with long cycle life, Adv. Mater., 2012, 24(9): 1176

    Google Scholar 

  116. Y. Fu and A. Manthiram, Core-shell structured sulfurpolypyrrole composite cathodes for lithium-sulfur batteries, RSC Adv., 2012, 2: 5927

    Google Scholar 

  117. H. Chen, W. Dong, J. Ge, C. Wang, X. Wu, W. Lu, and L. Chen, Ultrafine sulfur nanoparticles in conducting polymer shell as cathode materials for high performance lithium/sulfur batteries, Sci. Rep., 2013, 3: 1910

    ADS  Google Scholar 

  118. Y. Bouligand, Twisted fibrous arrangements in biological materials and cholesteric mesophases, Tissue Cell, 1972, 4(2): 189

    Google Scholar 

  119. R. Roer and R. Dillaman, The structure and calcification of the crustacean cuticle, Am. Zool., 1984, 24: 893

    Google Scholar 

  120. M. M. Giraud-Guille, Plywood structures in nature, Curr. Opin. Solid State Mater. Sci., 1998, 3(3): 221

    ADS  Google Scholar 

  121. P. Y. Chen, A. Y. M. Lin, J. McKittrick, and M. A. Meyers, Structure and mechanical properties of crab exoskeletons, Acta Biomater., 2008, 4(3): 587

    Google Scholar 

  122. N. Fujita, M. Asai, T. Yamashita, and S. Shinkai, Solgel transcription of silica-based hybrid nanostructures using poly(N-vinylpyrrolidone)-coated [60]fullerene, single-walled carbon nanotube and block copolymer templates, J. Mater. Chem., 2004, 14(14): 2106

    Google Scholar 

  123. M. J. O’Connell, P. Boul, L. M. Ericson, C. Huffman, Y. Wang, E. Haroz, C. Kuper, J. Tour, K. D. Ausman, and R. E. Smalley, Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping, Chem. Phys. Lett., 2001, 342(3–4): 265

    ADS  Google Scholar 

  124. J. Hassoun and B. Scrosati, A high-performance polymer tin sulfur lithium ion battery, Angew. Chem. Int. Ed., 2010, 49(13): 2371

    Google Scholar 

  125. M. Nagao, A. Hayashi, and M. Tatsumisago, High-capacity Li2S-nanocarbon composite electrode for all-solid-state rechargeable lithium batteries, J. Mater. Chem., 2012, 22(19): 10015

    Google Scholar 

  126. K. Cai, M. K. Song, E. J. Cairns, and Y. Zhang, Nanostructured Li2S-C composites as cathode material for high-energy lithium/sulfur batteries, Nano Lett., 2012, 12(12): 6474

    ADS  Google Scholar 

  127. J. Guo, Z. Yang, Y. Yu, H. D. Abruña, and L. A. Archer, Lithium-sulfur battery cathode enabled by lithium-nitrile interaction, J. Am. Chem. Soc., 2013, 135(2): 763

    Google Scholar 

  128. Z. Lin, Z. Liu, N. J. Dudney, and C. Liang, Lithium superionic sulfide cathode for all-solid lithium-sulfur batteries, ACS Nano, 2013, 7(3): 2829

    Google Scholar 

  129. Y. Yang, M. T. McDowell, A. Jackson, J. J. Cha, S. S. Hong, and Y. Cui, New nanostructured Li2S/silicon rechargeable battery with high specific energy, Nano Lett., 2010, 10(4): 1486

    ADS  Google Scholar 

  130. Y. Yang, G. Zheng, S. Misra, J. Nelson, M. F. Toney, and Y. Cui, High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries, J. Am. Chem. Soc., 2012, 134(37): 15387

    Google Scholar 

  131. Z. W. Seh, Q. Zhang, W. Li, G. Zheng, H. Yao, and Y. Cui, Stable cycling of lithium sulfide cathodes through strong affinity with a bifunctional binder, Chem. Sci., 2013, 4(9): 3673

    Google Scholar 

  132. A. Kraft, On the discovery and history of prussian blue, Bull. Hist. Chem., 2008, 33(2): 61

    Google Scholar 

  133. S. I. Ohkoshi, K. I. Arai, Y. Sato, and K. Hashimoto, Humidity-induced magnetization and magnetic pole inversion in a cyano-bridged metal assembly, Nat. Mater., 2004, 3(12): 857

    ADS  Google Scholar 

  134. T. Matsuda, J. Kim, and Y. Moritomo, Symmetry switch of cobalt ferrocyanide framework by alkaline cation exchange, J. Am. Chem. Soc., 2010, 132(35): 12206

    Google Scholar 

  135. E. Coronado, M. C. Giménez-López, G. Levchenko, F. M. Romero, V. García-Baonza, A. Milner, and M. PazPasternak, Pressure-tuning of magnetism and linkage isomerism in iron(II) hexacyanochromate, J. Am. Chem. Soc., 2005, 127(13): 45

    Google Scholar 

  136. S. Margadonna, K. Prassides, and A. N. Fitch, Zero thermal expansion in a Prussian Blue analogue, J. Am. Chem. Soc., 2004, 126(47): 15390

    Google Scholar 

  137. S. S. Kaye and J. R. Long, Hydrogen storage in the dehydrated prussian blue analogues M3[Co(CN)6]2 (M = Mn, Fe, Co, Ni, Cu, Zn), J. Am. Chem. Soc., 2005, 127(18): 6506

    Google Scholar 

  138. K. Hashimoto and H. Ohkoshi, Design of novel magnets using Prussian blue analogues, Phil. Trans. R. Soc. Lond. A, 1999, 357(1762): 2977

    ADS  Google Scholar 

  139. T. Mallah, A. Marvilliers, and E. Rivière, From ferromagnets to high-spin molecules: The role of the organic ligands, Phil. Trans. R. Soc. Lond. A, 1999, 357(1762): 3139

    ADS  Google Scholar 

  140. M. Verdaguer, A. Bleuzen, V. Marvaud, J. Vaissermann, M. Seuleiman, C. Desplanches, A. Scuiller, C. Train, R. Garde, G. Gelly, C. Lomenech, I. Rosenman, P. Veillet, C. Cartier, and F. Villain, Molecules to build solids: High T c moleculebased magnets by design and recent revival of cyano complexes chemistry, Coord. Chem. Rev., 1999, 190–192: 1023

    Google Scholar 

  141. A. A. Karyakin, Prussian blue and its analogues: Electrochemistry and analytical applications, Electroanalysis, 2001, 13(10): 813

    Google Scholar 

  142. T. Matsuda, J. Kim, K. Ohoyama, and Y. Moritomo, Universal thermal response of the Prussian blue lattice, Phys. Rev. B, 2009, 79(17): 172302

    ADS  Google Scholar 

  143. A. Ludi and H. Güdel, Inorganic Chemistry, Berlin/Heidelberg: Springer, 1973: 1

    Google Scholar 

  144. H. J. Buser, D. Schwarzenbach, W. Petter, and A. Ludi, The crystal structure of Prussian blue: Fe4[Fe(CN)6]3.xH2O, Inorg. Chem., 1977, 16(11): 2704

    Google Scholar 

  145. F. Herren, P. Fischer, A. Ludi, and W. Hälg, Neutron diffraction study of Prussian blue, Fe4[Fe(CN)6]3.xH2O. Location of water molecules and long-range magnetic order, Inorg. Chem., 1980, 19(4): 956

    Google Scholar 

  146. P. Bhatt, N. Thakur, M. D. Mukadam, S. S. Meena, and S. M. Yusuf, Evidence for the existence of oxygen clustering and understanding of structural disorder in prussian blue analogues molecular magnet M15[Cr(CN)6]·zH2O (M = Fe and Co): Reverse Monte Carlo simulation and neutron diffraction study, J. Phys. Chem. C, 2013, 117(6): 2676

    Google Scholar 

  147. C. D. Wessells, R. A. Huggins, and Y. Cui, Copper hexacyanoferrate battery electrodes with long cycle life and high power, Nat. Commun., 2011, 2: 550

    ADS  Google Scholar 

  148. D. E. Stilwell, K. H. Park, and M. H. Miles, Electrochemical studies of the factors influencing the cycle stability of Prussian blue films, J. Appl. Electrochem., 1992, 22(4): 325

    Google Scholar 

  149. T. Oi, Electrochromic materials, Annu. Rev. Mater. Sci., 1986, 16(1): 185

    ADS  Google Scholar 

  150. K. Itaya, T. Ataka, and S. Toshima, Spectroelectrochemistry and electrochemical preparation method of Prussian blue modified electrodes, J. Am. Chem. Soc., 1982, 104(18): 4767

    Google Scholar 

  151. F. Scholz and A. Dostal, The formal potentials of solid metal hexacyanometalates, Angew. Chem. Int. Ed. Engl., 1996, 34(2324): 2685

    Google Scholar 

  152. N. Imanishi, T. Morikawa, J. Kondo, Y. Takeda, O. Yamamoto, N. Kinugasa, and T. Yamagishi, Lithium intercalation behavior into iron cyanide complex as positive electrode of lithium secondary battery, J. Power Sources, 1999, 79(2): 215

    ADS  Google Scholar 

  153. D. Asakura, C. H. Li, Y. Mizuno, M. Okubo, H. S. Zhou, and D. R. Talham, Bimetallic cyanide-bridged coordination polymers as lithium ion cathode materials: Core-shell nanoparticles with enhanced cyclability, J. Am. Chem. Soc., 2013, 135(7): 2793

    Google Scholar 

  154. X. J. Wang, F. Krumeich, and R. Nesper, Nanocomposite of manganese ferrocyanide and graphene: A promising cathode material for rechargeable lithium ion batteries, Electrochem. Commun., 2013, 34: 246

    Google Scholar 

  155. N. Imanishi, T. Morikawa, J. Kondo, R. Yamane, Y. Takeda, O. Yamamoto, H. Sakaebe, and M. Tabuchi, Lithium intercalation behavior of iron cyanometallates, J. Power Sources, 1999, 81–82: 530

    Google Scholar 

  156. M. Takachi, Y. Kurihara, and Y. Moritomo, Channel size dependence of Li+ insertion/extraction in nanoporous hexacyanoferrates, J. Mater. Sci. Eng. B, 2012, 2(8): 452

    Google Scholar 

  157. M. Okubo and I. Honma, Ternary metal Prussian blue analogue nanoparticles as cathode materials for Li-ion batteries, Dalton Trans., 2013, 42(45): 15881

    Google Scholar 

  158. M. Takachi, T. Matsuda, and Y. Moritomo, Structural, electronic, and electrochemical properties of LixO[Fe(CN)6]0.90·2.9H2O, Jpn. J. Appl. Phys., 2013, 52: 044301

    Google Scholar 

  159. L. Wang, Y. H. Lu, J. Liu, M. W. Xu, J. G. Cheng, D. W. Zhang, and J. B. Goodenough, A superior low-cost cathode for a Na-ion battery, Angew. Chem. Int. Ed., 2013, 52(7): 1964

    Google Scholar 

  160. Y. Lu, L. Wang, J. Cheng, and J. B. Goodenough, Prussian blue: A new framework of electrode materials for sodium batteries, Chem. Commun., 2012, 48(52): 6544

    Google Scholar 

  161. H. Lee, Y. I. Kim, J. K. Park, and J. W. Choi, Sodium zinc hexacyanoferrate with a well-defined open framework as a positive electrode for sodium ion batteries, Chem. Commun., 2012, 48(67): 8416

    Google Scholar 

  162. T. Matsuda, M. Takachi, and Y. Moritomo, A sodium manganese ferrocyanide thin film for Na-ion batteries, Chem. Commun., 2013, 49(27): 2750

    Google Scholar 

  163. M. Takachi, T. Matsuda, and Y. Moritomo, Cobalt hexacyanoferrate as cathode material for Na+ secondary battery, Appl. Phys. Express, 2013, 6(2): 025802

    ADS  Google Scholar 

  164. W. Li, J. R. Dahn, and D. S. Wainwright, Rechargeable lithium batteries with aqueous electrolytes, Science, 1994, 264(5162): 1115

    ADS  Google Scholar 

  165. Y. Mizuno, M. Okubo, D. Asakura, T. Saito, E. Hosono, Y. Saito, K. Oh-ishi, T. Kudo, and H. Zhou, Impedance spectroscopic study on interfacial ion transfers in cyanidebridged coordination polymer electrode with organic electrolyte, Electrochim. Acta, 2012, 63: 139

    Google Scholar 

  166. Y. Mizuno, M. Okubo, E. Hosono, T. Kudo, H. Zhou, and K. Oh-ishi, Suppressed activation energy for interfacial charge transfer of a Prussian blue analog thin film electrode with hydrated ions (Li+, Na+, and Mg2+), J. Phys. Chem. C, 2013, 117(21): 10877

    Google Scholar 

  167. S. I. Ohkoshi, K. Nakagawa, K. Tomono, K. Imoto, Y. Tsunobuchi, and H. Tokoro, High proton conductivity in prussian blue analogues and the interference effect by magnetic ordering, J. Am. Chem. Soc., 2010, 132(19): 6620

    Google Scholar 

  168. Y. Moritomo, T. Matsuda, Y. Kurihara, and J. Kim, Cubic-rhombohedral structural phase transition in Na1.32Mn[Fe(CN)6]0.83·3.6H2O, J. Phys. Soc. Jpn., 2011, 80(7): 074608

    ADS  Google Scholar 

  169. C. D. Wessells, M. T. McDowell, S. V. Peddada, M. Pasta, R. A. Huggins, and Y. Cui, Tunable reaction potentials in open framework nanoparticle battery electrodes for grid-scale energy storage, ACS Nano, 2012, 6(2): 1688

    Google Scholar 

  170. R. Chen, H. Tanaka, T. Kawamoto, M. Asai, C. Fukushima, H. Na, M. Kurihara, M. Watanabe, M. Arisaka, and T. Nankawa, Selective removal of cesium ions from wastewater using copper hexacyanoferrate nanofilms in an electrochemical system, Electrochim. Acta, 2013, 87: 119

    Google Scholar 

  171. C. D. Wessells, S. V. Peddada, M. T. McDowell, R. A. Huggins, and Y. Cui, The effect of insertion species on nanostruc-tured open framework hexacyanoferrate battery electrodes, J. Electrochem. Soc., 2012, 159(2): A98

    Google Scholar 

  172. C. D. Wessells, S. V. Peddada, R. A. Huggins, and Y. Cui, Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries, Nano Lett., 2011, 11(12): 5421

    ADS  Google Scholar 

  173. M. Pasta, C. D. Wessells, R. A. Huggins, and Y. Cui, A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage, Nat. Commun., 2012, 3: 1149

    ADS  Google Scholar 

  174. R. Klenze, B. Kanellakopulos, G. Trageser, and H. H. Eysel, Manganese hexacyanomanganate: Magnetic interactions via cyanide in a mixed valence Prussian blue type compound, J. Chem. Phys., 1980, 72(11): 5819

    ADS  Google Scholar 

  175. J. H. Her, P. W. Stephens, C. M. Kareis, J. G. Moore, K. S. Min, J. W. Park, G. Bali, B. S. Kennon, and J. S. Miller, Anomalous non-Prussian blue structures and magnetic ordering of K2MnII[MnII(CN)6] and Rb2 MnII[MnII(CN)6], Inorg. Chem., 2010, 49(4): 1524

    Google Scholar 

  176. M. Pasta, C. D. Wessells, N. Liu, J. Nelson, M. T. Mc Dowell, R. A. Huggins, M. F. Toney, and Y. Cui, Full open-framework batteries for stationary energy storage, Nat. Commun., DOI: 10.1038/ncomms4007, 201

    Google Scholar 

  177. R. Y. Wang, C. D. Wessells, R. A. Huggins, and Y. Cui, Highly reversible open framework nanoscale electrodes for divalent ion batteries, Nano Lett., 2013, 13(11): 5748

    ADS  Google Scholar 

  178. F. La Mantia, M. Pasta, H. D. Deshazer, B. E. Logan, and Y. Cui, Batteries for efficient energy extraction from a water salinity difference, Nano Lett., 2011, 11(4): 1810

    ADS  Google Scholar 

  179. M. Pasta, C. D. Wessells, Y. Cui, and F. La Mantia, A desalination battery, Nano Lett., 2012, 12(2): 839

    ADS  Google Scholar 

  180. M. Pasta, A. Battistel, and F. La Mantia, Batteries for lithium recovery from brines, Energy Environ. Sci., 2012, 5(11): 9487

    Google Scholar 

  181. P. J. Hall, M. Mirzaeian, S. I. Fletcher, F. B. Sillars, A. J. R. Rennie, G. O. Shitta-Bey, G. Wilson, A. Cruden, and R. Carter, Energy storage in electrochemical capacitors: designing functional materials to improve performance, Energy Environ. Sci., 2010, 3(9): 1238

    Google Scholar 

  182. M. Winter and R. J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev., 2004, 104(10): 4245

    Google Scholar 

  183. J. R. Miller and P. Simon, Electrochemical capacitors for energy management, Science, 2008, 321(5889): 651

    Google Scholar 

  184. P. Simon and Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mater., 2008, 7(11): 845

    ADS  Google Scholar 

  185. V. Subramanian, S. C. Hall, P. H. Smith, and B. Rambabu, Mesoporous anhydrous RuO2 as a supercapacitor electrode material, Solid State Ion., 2004, 175(1–4): 511

    Google Scholar 

  186. C. C. Hu, K. H. Chang, M. C. Lin, and Y. T. Wu, Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors, Nano Lett., 2006, 6(12): 2690

    ADS  Google Scholar 

  187. H. Y. Lee and J. B. Goodenough, Supercapacitor behavior with KCl electrolyte, J. Solid State Chem., 1999, 144(1): 220

    ADS  Google Scholar 

  188. A. Rudge, J. Davey, I. Raistrick, S. Gottesfeld, and J. P. Ferraris, Conducting polymers as active materials in electrochemical capacitors, J. Power Sources, 1994, 47(1–2): 89

    ADS  Google Scholar 

  189. L. Hu and Y. Cui, Energy and environmental nanotechnology in conductive paper and textiles, Energy Environ. Sci., 2012, 5(4): 6423

    MathSciNet  Google Scholar 

  190. C. Niu, E. K. Sichel, R. Hoch, D. Moy, and H. Tennent, High power electrochemical capacitors based on carbon nanotube electrodes, Appl. Phys. Lett., 1997, 70(11): 1480

    ADS  Google Scholar 

  191. M. Kaempgen, C. K. Chan, J. Ma, Y. Cui, and G. Gruner, Printable thin film supercapacitors using single-walled carbon nanotubes, Nano Lett., 2009, 9(5): 1872

    ADS  Google Scholar 

  192. L. Hu, J. W. Choi, Y. Yang, S. Jeong, F. La Mantia, L. F. Cui, and Y. Cui, Highly conductive paper for energy-storage devices, Proc. Natl. Acad. Sci. USA, 2009, 106(51): 21490

    ADS  Google Scholar 

  193. M. Pasta, F. La Mantia, L. Hu, H. Deshazer, and Y. Cui, Aqueous supercapacitors on conductive cotton, Nano Res., 2010, 3(6): 452

    Google Scholar 

  194. L. Hu, M. Pasta, F. L. Mantia, L. Cui, S. Jeong, H. D. Deshazer, J. W. Choi, S. M. Han, and Y. Cui, Stretchable, porous, and conductive energy textiles, Nano Lett., 2010, 10(2): 708

    ADS  Google Scholar 

  195. X. Xie, G. Yu, N. Liu, Z. Bao, C. S. Criddle, and Y. Cui, Graphene-sponges as high-performance low-cost anodes for microbial fuel cells, Energy Environ. Sci., 2012, 5: 6862

    Google Scholar 

  196. L. Hu, H. Wu, and Y. Cui, Printed energy storage devices by integration of electrodes and separators into single sheets of paper, Appl. Phys. Lett., 2010, 96(18): 183502

    ADS  Google Scholar 

  197. G. Zheng, L. Hu, H. Wu, X. Xie, and Y. Cui, Paper supercapacitors by a solvent-free drawing method, Energy Environ. Sci., 2011, 4(9): 3368

    Google Scholar 

  198. Z. S. Wu, G. Zhou, L. C. Yin, W. Ren, F. Li, and H. M. Cheng, Graphene/metal oxide composite electrode materials for energy storage, Nano Energy, 2012, 1(1): 107

    Google Scholar 

  199. G. Yu, X. Xie, L. Pan, Z. Bao, and Y. Cui, Hybrid nanostructured materials for high-performance electrochemical capacitors, Nano Energy, 2013, 2(2): 213

    Google Scholar 

  200. X. Lang, A. Hirata, T. Fujita, and M. Chen, Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors, Nat. Nanotechnol., 2011, 6(4): 232

    ADS  Google Scholar 

  201. L. Hu, W. Chen, X. Xie, N. Liu, Y. Yang, H. Wu, Y. Yao, M. Pasta, H. N. Alshareef, and Y. Cui, Symmetrical MnO2-carbon nanotube-textile nanostructures for wearable pseudocapacitors with high mass loading, ACS Nano, 2011, 5(11): 8904

    Google Scholar 

  202. W. Chen, R. B. Rakhi, L. Hu, X. Xie, Y. Cui, and H. N. Alshareef, High-performance nanostructured supercapacitors on a sponge, Nano Lett., 2011, 11(12): 5165

    ADS  Google Scholar 

  203. G. Yu, L. Hu, M. Vosgueritchian, H. Wang, X. Xie, J. R. McDonough, X. Cui, Y. Cui, and Z. Bao, Solutionprocessed graphene/MnO2 nanostructured textiles for highperformance electrochemical capacitors, Nano Lett., 2011, 11(7): 2905

    Google Scholar 

  204. G. Yu, L. Hu, N. Liu, H. Wang, M. Vosgueritchian, Y. Yang, Y. Cui, and Z. Bao, Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping, Nano Lett., 2011, 11(10): 4438

    ADS  Google Scholar 

  205. N. A. Peppas, J. Z. Hilt, A. Khademhosseini, and R. Langer, Hydrogels in biology and medicine: From molecular principles to bionanotechnology, Adv. Mater., 2006, 18(11): 1345

    Google Scholar 

  206. A. Guiseppi-Elie, Electroconductive hydrogels: Synthesis, characterization and biomedical applications, Biomaterials, 2010, 31(10): 2701

    Google Scholar 

  207. R. A. Green, S. Baek, L. A. Poole-Warren, and P. J. Martens, Conducting polymer-hydrogels for medical electrode applications, Sci. Technol. Adv. Mater., 2010, 11(1): 014107

    Google Scholar 

  208. S. Ghosh, J. Rasmusson, and O. Inganäs, Supramolecular self-assembly for enhanced conductivity in conjugated polymer blends: Ionic crosslinking in blends of poly (3,4-ethylenedioxythiophene)-poly(styrenesulfonate) and poly(vinylpyrrolidone), Adv. Mater., 1998, 10(14): 1097

    Google Scholar 

  209. S. Ghosh and O. Inganäs, Conducting polymer hydrogels as 3D electrodes: Applications for supercapacitors, Adv. Mater., 1999, 11(14): 1214

    Google Scholar 

  210. N. Mano, J. E. Yoo, J. Tarver, Y. L. Loo, and A. Heller, An electron-conducting cross-linked polyaniline-based redox hydrogel, formed in one step at pH 7.2, wires glucose oxidase, J. Am. Chem. Soc., 2007, 129(22): 7006

    Google Scholar 

  211. L. Pan, G. Yu, D. Zhai, H. R. Lee, W. Zhao, N. Liu, H. Wang, B. C. K. Tee, Y. Shi, Y. Cui, and Z. Bao, Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity, Proc. Natl. Acad. Sci. USA, 2012, 109(24): 9287

    Google Scholar 

  212. Y. Zhao, B. Liu, L. Pan, and G. Yu, 3D nanostructured conductive polymer hydrogels for high-performance electrochemical devices, Energy Environ. Sci., 2013, 6(10): 2856

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Cui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, N., Li, W., Pasta, M. et al. Nanomaterials for electrochemical energy storage. Front. Phys. 9, 323–350 (2014). https://doi.org/10.1007/s11467-013-0408-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-013-0408-7

Keywords

Navigation