Skip to main content
Log in

Environmental chemical stressors as epigenome modifiers: a new horizon in assessment of toxicological effects

  • Review
  • Environmental Chemistry
  • Published:
Chinese Science Bulletin

Abstract

In eukaryotic cells, chromatin transformation from euchromatin into heterochromatin as a means of controlling gene expression and replication has been known as the “accessibility hypothesis”. The interplay of epigenetic changes including histone modifications, DNA methylation, RNA interference (RNAi) and other functional epigenetic components are intricate. It is believed that these changes are well-programmed, inherited and can be modified by environmental contaminant stressors. Environmentally-driven epigenetic alterations during development, e.g. embryonic, foetal or neonatal stage, may influence disease susceptibility in adulthood. Therefore, understanding how epigenome modifications develop in response to environmental chemicals and, how epigenetic-xenobiotic interactions influence human health will shed new insights into gene-environment interactions in the epidemiology of several diseases including cancer. In this review, we consider studies of chemical modifiers including nutritional and xenobiotic effects on epigenetic components in vitro or in vivo. By examining the most-studied epigenome modifications and how their respective roles are interlinked, we highlight the central role of xenbiotic-modified epigenetic mechanisms. A major requirement will be to study and understand effects following environmentally-relevant exposures. We suggest that the study of epigenetic toxicology will open up new opportunities to devise strategies for the prevention or treatment of at-risk populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peterson CL, Laniel MA (2004) Histones and histone modifications. Curr Biol 14:546–551

    Article  Google Scholar 

  2. Portela A, Esteller M (2010) Epigenetic modifications and human disease. Nat Biotechnol 28:1057–1068

    Article  Google Scholar 

  3. Lachner M, O’sullivan RJ, Jenuwein T (2003) An epigenetic road map for histone lysine methylation. J Cell Sci 116:2117–2124

    Article  Google Scholar 

  4. Nakao M (2001) Epigenetics: interaction of DNA methylation and chromatin. Gene 278:25–31

    Article  Google Scholar 

  5. Quina A, Buschbeck M, Di Croce L (2006) Chromatin structure and epigenetics. Biochem Pharmacol 72:1563–1569

    Article  Google Scholar 

  6. Perera F, Herbstman J (2011) Prenatal environmental exposures, epigenetics, and disease. Reprod Toxicol 31:363–373

    Article  Google Scholar 

  7. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  Google Scholar 

  8. Mattick JS, Amaral PP, Dinger ME et al (2009) RNA regulation of epigenetic processes. Bioessays 31:51–59

    Article  Google Scholar 

  9. Jackson RJ, Standart N (2007) How do microRNAs regulate gene expression? Sci STKE 2007:re1

  10. Martin FL (2013) Epigenetic influences in the aetiology of cancers arising from breast and prostate: a hypothesised transgenerational evolution in chromatin accessibility. ISRN Oncol 2013:624794

    Google Scholar 

  11. Chueh AC, Northrop EL, Brettingham-Moore KH et al (2009) LINE retrotransposon RNA is an essential structural and functional epigenetic component of a core neocentromeric chromatin. PLoS Genet 5:e1000354

    Article  Google Scholar 

  12. Talbert PB, Henikoff S (2006) Spreading of silent chromatin: inaction at a distance. Nat Rev Genet 7:793–803

    Article  Google Scholar 

  13. Fischle W, Wang Y, Allis CD (2003) Histone and chromatin cross-talk. Curr Opin Cell Biol 15:172–183

    Article  Google Scholar 

  14. Fabbri M, Garzon R, Cimmino A et al (2007) MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA 104:15805–15810

    Article  Google Scholar 

  15. Cedar H, Bergman Y (2009) Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 10:295–304

    Article  Google Scholar 

  16. Mohammad HP, Baylin SB (2010) Linking cell signaling and the epigenetic machinery. Nat Biotechnol 28:1033–1038

    Article  Google Scholar 

  17. Martin FL (2007) Epigenomics and disease, 10th anniversary winter meeting of the UK Molecular Epidemiology Group (MEG), The Royal Statistical Society, London, UK, 8 December 2006. Mutagenesis 2007(22):425–427

    Article  Google Scholar 

  18. Reamon-Buettner SM, Borlak J (2007) A new paradigm in toxicology and teratology: altering gene activity in the absence of DNA sequence variation. Reproduct Toxicol 24:20–30

    Article  Google Scholar 

  19. Szyf M (2007) The dynamic epigenome and its implications in toxicology. Toxicol Sci 100:7–23

    Article  Google Scholar 

  20. Szyf M, McGowan P, Meaney MJ (2008) The social environment and the epigenome. Environ Mol Mutagen 49:46–60

    Article  Google Scholar 

  21. Baccarelli A, Bollati V (2009) Epigenetics and environmental chemicals. Curr Opin Pediatr 21:243–251

    Article  Google Scholar 

  22. Wilhelm-Benartzi CS, Houseman EA, Maccani MA et al (2012) In utero exposures, infant growth, and DNA methylation of repetitive elements and developmentally related genes in human placenta. Environ Health Perspect 120:296–302

    Article  Google Scholar 

  23. Cooney CA (2007) Epigenetics-DNA-based mirror of our environment? Dis Markers 23:121–137

    Article  Google Scholar 

  24. Anway MD, Cupp AS, Uzumcu M et al (2005) Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308:1466–1469

    Article  Google Scholar 

  25. Anway MD, Skinner MK (2006) Epigenetic transgenerational actions of endocrine disruptors. Endocrinology 147:s43–s49

    Article  Google Scholar 

  26. Groth A, Rocha W, Verreault A et al (2007) Chromatin challenges during DNA replication and repair. Cell 128:721–733

    Article  Google Scholar 

  27. Chen H, Ke Q, Kluz T et al (2006) Nickel ions increase histone H3 lysine 9 dimethylation and induce transgene silencing. Mol Cell Biol 26:3728–3737

    Article  Google Scholar 

  28. Golebiowski F, Kasprzak KS (2005) Inhibition of core histones acetylation by carcinogenic nickel (II). Mol Cell Biochem 279:133–139

    Article  Google Scholar 

  29. Ke Q, Davidson T, Chen H et al (2006) Alterations of histone modifications and transgene silencing by nickel chloride. Carcinogenesis 27:1481–1488

    Article  Google Scholar 

  30. Wei YD, Tepperman K, Huang M et al (2004) Chromium inhibits transcription from polycyclic aromatic hydrocarbon-inducible promoters by blocking the release of histone deacetylase and preventing the binding of p300 to chromatin. J Biol Chem 279:4110–4119

    Article  Google Scholar 

  31. Kondo K, Takahashi Y, Hirose Y et al (2006) The reduced expression and aberrant methylation of p16INK4a in chromate workers with lung cancer. Lung Cancer 53:295–302

    Article  Google Scholar 

  32. Schnekenburger M, Talaska G, Puga A (2007) Chromium cross-links histone deacetylase 1-DNA methyltransferase 1 complexes to chromatin, inhibiting histone-remodeling marks critical for transcriptional activation. Mol Cell Biol 27:7089–7101

    Article  Google Scholar 

  33. Onishchenko N, Karpova N, Sabri F et al (2008) Long-lasting depression-like behavior and epigenetic changes of BDNF gene expression induced by perinatal exposure to methylmercury. J Neurochem 106:1378–1387

    Article  Google Scholar 

  34. Poirier LA, Vlasova TI (2002) The prospective role of abnormal methyl metabolism in cadmium toxicity. Environ Health Perspect 110:793–795

    Article  Google Scholar 

  35. Takiguchi M, Achanzar WE, Qu W et al (2003) Effects of cadmium on DNA-(cytosine-5) methyltransferase activity and DNA methylation status during cadmium-induced cellular transformation. Exp Cell Res 286:355–365

    Article  Google Scholar 

  36. Belinsky SA, Klinge DM, Liechty KC et al (2004) Plutonium targets the p16 gene for inactivation by promoter hypermethylation in human lung adenocarcinoma. Carcinogenesis 25:1063–1067

    Article  Google Scholar 

  37. Reichard JF, Schnekenburger M, Puga A (2007) Long term low-dose arsenic exposure induces loss of DNA methylation. Biochem Biophys Res Commun 352:188–192

    Article  Google Scholar 

  38. Weaver ICG, Champagne FA, Brown SE et al (2005) Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: altering epigenetic marking later in life. J Neurosci 25:11054

    Google Scholar 

  39. Chanda S, Dasgupta UB, GuhaMazumder D et al (2006) DNA hypermethylation of promoter of gene p53 and p16 in arsenic-exposed people with and without malignancy. Toxicol Sci 89:431–437

    Article  Google Scholar 

  40. Pilsner JR, Liu X, Ahsan H et al (2007) Genomic methylation of peripheral blood leukocyte DNA: influences of arsenic and folate in Bangladeshi adults. Am J Clin Nutr 86:1179–1186

    Google Scholar 

  41. Crews D, Gore AC, Hsu TS et al (2007) Transgenerational epigenetic imprints on mate preference. Proc Natl Acad Sci USA 104:5942–5946

    Article  Google Scholar 

  42. Schüssel S (2008) Altered microRNA expression in response to vinclozolin exposure. Dissertation, Brown University, Rhode Island

  43. Li S, Hansman R, Newbold R et al (2003) Neonatal diethylstilbestrol exposure induces persistent elevation of c-fos expression and hypomethylation in its exon-4 in mouse uterus. Mol Carcinogen 38:78–84

    Article  Google Scholar 

  44. Newbold RR, Padilla-Banks E, Jefferson WN (2006) Adverse effects of the model environmental estrogen diethylstilbestrol are transmitted to subsequent generations. Endocrinology 147:s11–s17

    Article  Google Scholar 

  45. Sato K, Fukata H, Kogo Y et al (2006) Neonatal exposure to diethylstilbestrol alters the expression of DNA methyltransferases and methylation of genomic DNA in the epididymis of mice. Endocr J 53:337

    Google Scholar 

  46. Ho SM, Tang WY, Belmonte de Frausto J et al (2006) Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Res 66:5624–5632

    Article  Google Scholar 

  47. Dolinoy DC, Huang D, Jirtle RL (2007) Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci USA 104:13056–13061

    Article  Google Scholar 

  48. Paul S, Kim S, Park H et al (2009) Alteration in miRNA expression profiling with response to nonylphenol in human cell lines. Mol Cell Toxicol 5:67–74

    Google Scholar 

  49. Wu Q, Ohsako S, Ishimura R et al (2004) Exposure of mouse preimplantation embryos to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) alters the methylation status of imprinted genes H19 and Igf2. Biol Reprod 70:1790–1797

    Article  Google Scholar 

  50. Kang SC, Lee BM (2005) DNA methylation of estrogen receptor α gene by phthalates. J Toxicol Environ Health A 68:1995–2003

    Article  Google Scholar 

  51. McLachlan JA, Simpson E, Martin M (2006) Endocrine disrupters and female reproductive health. Best Pract Res Clin Endocrinol Metab 20:63–75

    Article  Google Scholar 

  52. Tao L, Wang W, Li L et al (2005) DNA hypomethylation induced by drinking water disinfection by-products in mouse and rat kidney. Toxicol Sci 87:344–352

    Article  Google Scholar 

  53. Wu S, Zhu J, Li Y et al (2010) Dynamic effect of di-2-(ethylhexyl) phthalate on testicular toxicity: epigenetic changes and their impact on gene expression. Int J Toxicol 29:193–200

    Article  Google Scholar 

  54. Rahman I, Gilmour PS, Jimenez LA et al (2002) Oxidative stress and TNF-α induce histone acetylation and NF-κB/AP-1 activation in alveolar epithelial cells: potential mechanism in gene transcription in lung inflammation. Mol Cell Biochem 234:239–248

    Article  Google Scholar 

  55. Esteller M (2005) DNA methylation and cancer therapy: new developments and expectations. Curr Opin Oncol 17:55–60

    Article  Google Scholar 

  56. Davis CD, Uthus EO (2003) Dietary folate and selenium affect dimethylhydrazine-induced aberrant crypt formation, global DNA methylation and one-carbon metabolism in rats. J Nutr 133:2907–2914

    Google Scholar 

  57. Ecke I, Petry F, Rosenberger A et al (2009) Antitumor effects of a combined 5-aza-2′ deoxycytidine and valproic acid treatment on rhabdomyosarcoma and medulloblastoma in Ptch mutant mice. Cancer Res 69:887–895

    Article  Google Scholar 

  58. Pogribny IP, Tryndyak VP, Boyko A et al (2007) Induction of microRNAome deregulation in rat liver by long-term tamoxifen exposure. Mutat Res 619:30–37

    Article  Google Scholar 

  59. Day JK, Bauer AM, desBordes C et al (2002) Genistein alters methylation patterns in mice. J Nutr 132:2419S–2423S

    Google Scholar 

  60. Dolinoy DC, Weidman JR, Waterland RA et al (2006) Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome. Environ Health Perspect 114:567–572

    Article  Google Scholar 

  61. Fang MZ, Wang Y, Ai N et al (2003) Tea polyphenol (−)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res 63:7563–7570

    Google Scholar 

  62. Lee WJ, Shim JY, Zhu BT (2005) Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids. Mol Pharmacol 68:1018–1030

    Article  Google Scholar 

  63. Yuasa Y, Nagasaki H, Akiyama Y et al (2009) DNA methylation status is inversely correlated with green tea intake and physical activity in gastric cancer patients. Int J Cancer 124:2677–2682

    Article  Google Scholar 

  64. Hong T, Nakagawa T, Pan WJ et al (2004) Isoflavones stimulate estrogen receptor-mediated core histone acetylation. Biochem Biophys Res Commun 317:259–264

    Article  Google Scholar 

  65. Liu H, Zhou Y, Boggs S et al (2007) Cigarette smoke induces demethylation of prometastatic oncogene synuclein-γ in lung cancer cells by downregulation of DNMT3B. Oncogene 26:5900–5910

    Article  Google Scholar 

  66. Perera F, Tang W, Herbstman J et al (2009) Relation of DNA methylation of 5′-CpG island of ACSL3 to transplacental exposure to airborne polycyclic aromatic hydrocarbons and childhood asthma. PLoS One 4:e4488

    Article  Google Scholar 

  67. Pulling LC, Vuillemenot BR, Hutt JA et al (2004) Aberrant promoter hypermethylation of the death-associated protein kinase gene is early and frequent in murine lung tumors induced by cigarette smoke and tobacco carcinogens. Cancer Res 64:3844–3848

    Article  Google Scholar 

  68. Izzotti A, Calin GA, Arrigo P et al (2009) Downregulation of microRNA expression in the lungs of rats exposed to cigarette smoke. FASEB J 23:806–812

    Article  Google Scholar 

  69. Ouko LA, Shantikumar K, Knezovich J et al (2009) Effect of alcohol consumption on CpG methylation in the differentially methylated regions of H19 and IG-DMR in Male Gametes: implications for fetal alcohol spectrum disorders. Alcohol Clin Exp Res 33:1615–1627

    Article  Google Scholar 

  70. Impey S (2007) A histone deacetylase regulates addiction. Neuron 56:415–417

    Article  Google Scholar 

  71. Tarantini L, Bonzini M, Apostoli P et al (2009) Effects of particulate matter on genomic DNA methylation content and iNOS promoter methylation. Environ Health Perspect 117:217–222

    Google Scholar 

  72. Jardim MJ, Fry RC, Jaspers I et al (2009) Disruption of microRNA expression in human airway cells by diesel exhaust particles is linked to tumorigenesis-associated pathways. Environ Health Perspect 117:1745–1751

    Google Scholar 

  73. Bollati V, Marinelli B, Apostoli P et al (2010) Exposure to metal-rich particulate matter modifies the expression of candidate microRNAs in peripheral blood leukocytes. Environ Health Perspect 118:763–768

    Article  Google Scholar 

  74. Friso S, Choi SW, Girelli D et al (2002) A common mutation in the 5,10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status. Proc Natl Acad Sci USA 99:5606–5611

    Article  Google Scholar 

  75. Cooney CA, Dave AA, Wolff GL (2002) Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J Nutr 132:2393S–2400S

    Google Scholar 

  76. Cropley JE, Suter CM, Beckman KB et al (2006) Germ-line epigenetic modification of the murine Avy allele by nutritional supplementation. Proc Natl Acad Sci USA 103:17308–17312

    Article  Google Scholar 

  77. Waterland RA, Jirtle RL (2003) Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 23:5293–5300

    Article  Google Scholar 

  78. Waterland RA, Dolinoy DC, Lin JR et al (2006) Maternal methyl supplements increase offspring DNA methylation at Axin Fused. Genesis 44:401–406

    Article  Google Scholar 

  79. Ingrosso D, Cimmino A, Perna AF et al (2003) Folate treatment and unbalanced methylation and changes of allelic expression induced by hyperhomocysteinaemia in patients with uraemia. Lancet 361:1693–1699

    Article  Google Scholar 

  80. Hollingsworth JW, Maruoka S, Boon K et al (2008) In utero supplementation with methyl donors enhances allergic airway disease in mice. J Clin Invest 118:3462–3469

    Google Scholar 

  81. Zawia NH, Lahiri DK, Cardozo-Pelaez F (2009) Epigenetics, oxidative stress, and Alzheimer disease. Free Radic Biol Med 46:1241–1249

    Article  Google Scholar 

  82. Arasaradnam R, Commane D, Bradburn D et al (2008) A review of dietary factors and its influence on DNA methylation in colorectal carcinogenesis. Epigenetics 3:193–198

    Article  Google Scholar 

  83. Xiang N, Zhao R, Song G et al (2008) Selenite reactivates silenced genes by modifying DNA methylation and histones in prostate cancer cells. Carcinogenesis 29:2175–2181

    Article  Google Scholar 

  84. Teneng I, Montoya-Durango DE, Quertermous JL et al (2011) Reactivation of L1 retrotransposon by benzo(a)pyrene involves complex genetic and epigenetic regulation. Epigenetics 6:355–367

    Article  Google Scholar 

  85. Lee DH, Jacobs DR Jr, Porta M (2009) Hypothesis: a unifying mechanism for nutrition and chemicals as lifelong modulators of DNA hypomethylation. Environ Health Perspect 117:1799–1802

    Article  Google Scholar 

  86. Foley DL, Craig JM, Morley R et al (2009) Prospects for epigenetic epidemiology. Am J Epidemiol 169:389–400

    Article  Google Scholar 

  87. Kim KY, Kim DS, Lee SK et al (2010) Association of low-dose exposure to persistent organic pollutants with global DNA hypomethylation in healthy Koreans. Environ Health Perspect 118:370–374

    Article  Google Scholar 

  88. Rusiecki JA, Baccarelli A, Bollati V et al (2008) Global DNA hypomethylation is associated with high serum-persistent organic pollutants in Greenlandic Inuit. Environ Health Perspect 116:1547–1552

    Article  Google Scholar 

  89. Wright RO, Schwartz J, Wright RJ et al (2010) Biomarkers of lead exposure and DNA methylation within retrotransposons. Environ Health Perspect 118:790–795

    Article  Google Scholar 

  90. Castro R, Rivera I, Struys EA et al (2003) Increased homocysteine and S-adenosylhomocysteine concentrations and DNA hypomethylation in vascular disease. Clin Chem 49:1292–1296

    Article  Google Scholar 

  91. Krause B, Sobrevia L, Casanello P (2009) Epigenetics: new concepts of old phenomena in vascular physiology. Curr Vasc Pharmacol 7:513–520

    Article  Google Scholar 

  92. Rahman I, Marwick J, Kirkham P (2004) Redox modulation of chromatin remodeling: impact on histone acetylation and deacetylation, NF-[kappa] B and pro-inflammatory gene expression. Biochem Pharmacol 68:1255–1267

    Article  Google Scholar 

  93. Naviaux RK (2008) Mitochondrial control of epigenetics. Cancer Biol Ther 7:1191–1193

    Article  Google Scholar 

  94. Smiraglia DJ, Kulawiec M, Bistulfi GL et al (2008) A novel role for mitochondria in regulating epigenetic modification in the nucleus. Cancer Biol Ther 7:1182–1190

    Article  Google Scholar 

  95. Wallace DC, Fan W (2010) Energetics, epigenetics, mitochondrial genetics. Mitochondrion 10:12–31

    Article  Google Scholar 

  96. Ding GL, Wang FF, Shu J et al (2012) Transgenerational glucose intolerance with Igf2/H19 epigenetic alterations in mouse islet induced by intrauterine hyperglycemia. Diabetes 61:1133–1142

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Hundred Talent Program of Chinese Academy of Sciences for 2010 on Human Exposure to Environmental Pollutant and Health Effect, National Natural Science Foundation of China (21177123) and Xiamen Science and Technology Fund (3502Z20122003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heqing Shen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11434_2013_7_MOESM1_ESM.doc

Table S1 Effects of environment factors on histone modification and chromatin remodelling. Table S2 Effects of environment factors on global DNA and gene promoter methylation. Table S3 Effects of environment factors on the alteration of micro-RNA profile (DOC 320 kb)

About this article

Cite this article

Shen, H., Martin, F.L. & Su, Y. Environmental chemical stressors as epigenome modifiers: a new horizon in assessment of toxicological effects. Chin. Sci. Bull. 59, 349–355 (2014). https://doi.org/10.1007/s11434-013-0007-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-013-0007-6

Keywords

Navigation