Skip to main content
Log in

Applications of electrospun nanofibers

  • Review
  • Materials Science
  • Published:
Chinese Science Bulletin

Abstract

Polymeric nanofiber non-woven materials produced by electrospinning have extremely high surface-to-mass (or volume) ratio and a porous structure with excellent pore-interconnectivity. These characteristics plus the functionalities and surface chemistry of the polymer itself impart the nanofibers with desirable properties for a range of advanced applications. This review summarizes the recent progress in electrospun nanofibers, with an emphasis on their applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li H, Ke Y, Hu Y. Polymer nanofibers prepared by template melt extrusion. J Appl Polym Sci, 2006, 99(3): 1018–1023

    Article  CAS  Google Scholar 

  2. Ikegame M, Tajima K, Aida T. Template synthesis of polypyrrole nanofibers insulated within one-dimensional silicate channels: Hexagonal versus lamellar for recombination of polarons into bipolarons. Angew Chem Int Edit, 2003, 42(19): 2154–2157

    Article  CAS  Google Scholar 

  3. Yang Z, Xu B. Supramolecular hydrogels based on biofunctional nanofibers of self-assembled small molecules. J Mater Chem, 2007, 17(23): 2385–2393

    Article  CAS  Google Scholar 

  4. Feng X, Yang G, Xu Q, et al. Self-assembly of polyaniline/Au composites: From nanotubes to nanofibers. Macromol Rapid Comm, 2006, 27(1): 31–36

    Article  CAS  Google Scholar 

  5. Hong Y, Legge R L, Zhang S, et al. Effect of amino acid sequence and pH on nanofiber formation of self-assembling peptides EAK16-II and EAK16-IV. Biomacromolecules, 2003, 4(5): 1433–1442

    Article  PubMed  CAS  Google Scholar 

  6. Ma P X, Zhang R. Synthetic nano-scale fibrous extracellular matrix. J Biomed Mater Res Part A, 1999, 46(1): 60–72

    Article  CAS  Google Scholar 

  7. Ellison C J, Phatak A, Giles D W, et al. Melt blown nanofibers: Fiber diameter distributions and onset of fiber breakup. Polymer, 2007, 48(20): 3306–3316

    Article  CAS  Google Scholar 

  8. Teo W E, Ramakrishna S. A review on electrospinning design and nanofibre assemblies. Nanotechnology, 2006, 17(14): R89–R106

    Article  CAS  PubMed  Google Scholar 

  9. Gu B K, Shin M K, Sohn K W, et al. Direct fabrication of twisted nanofibers by electrospinning. Appl Phys Lett, 2007, 90(26): 263902

    Google Scholar 

  10. Panda P K, Ramakrishna S. Electrospinning of alumina nanofibers using different precursors. J Mater Sci, 2007, 42(6): 2189–2193

    Article  CAS  Google Scholar 

  11. Kim G, Kim W. Formation of oriented nanofibers using electrospinning. Appl Phys Lett, 2006, 88(23): 233101

    Google Scholar 

  12. Formhals A. Process and apparatus for preparing artificial threads. US Patent 1975504, 1934

  13. Doshi J, Reneker D H. Electrospinning process and applications of electrospun fibers. J Electrostat, 1995, 35(2–3): 151–160

    Article  CAS  Google Scholar 

  14. Srinivasan G, Reneker D H. Structure and morphology of small diameter electrospun aramide fibers. Polym Int, 1995, 36(2): 195–201

    Article  CAS  Google Scholar 

  15. Reneker D H, Chun I. Nanometer diameter fibres of polymers, produced by electrospinning. Nanotechnology, 1996, 7(3): 216–223

    Article  CAS  Google Scholar 

  16. Jaeger R, Schonherr H, Vancso G J. Chain packing in electro-spun poly(ethylene oxide) visualized by atome force microscopy. Macromolecules, 1996, 29(23): 7634–7636

    Article  CAS  Google Scholar 

  17. Yarin A L, Koombhongse S, Reneker D H. Bending instability in electrospinning of nanofibers. J Appl Phys, 2001, 89(5): 3018–3026

    Article  CAS  Google Scholar 

  18. Li D, Xia Y. Electrospinning of nanofibers: Reinventing the wheel? Adv Mater, 2004, 16(14): 1151–1170

    Article  CAS  Google Scholar 

  19. Subbiah T, Bhat G S, Tock R W, et al. Electrospinning of nanofibers. J Appl Polym Sci, 2005, 96(2): 557–569

    Article  CAS  Google Scholar 

  20. Greiner A, wendorff J H. Electrospinning: A fascinating method for the preparation of ultrathin fibers. Angew Chem Int Edit, 2007, 46(30): 5670–5703

    Article  CAS  Google Scholar 

  21. Theron A, Zussman E, Yarin A L. Electrostatic field-assisted alignment of electrospun nanofibres. Nanotechnology, 2001, 12(3): 384–390

    Article  Google Scholar 

  22. Li D, Wang Y, Xia Y. Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films. Adv Mater, 2004, 16(4): 361–366

    Article  CAS  Google Scholar 

  23. McCann J T, Li D, Xia Y. Electrospinning of nanofibers with core-sheath, hollow, or porous structures. J Mater Chem, 2005, 15(7): 735–738

    Article  CAS  Google Scholar 

  24. Shim W G, Kim C, Lee J W, et al. Adsorption characteristics of benzene on electrospun-derived porous carbon nanofibers. J Appl Polym Sci, 2006, 102(3): 2454–2462

    Article  CAS  Google Scholar 

  25. Madhugiri S, Sun B, Smirniotis P G, et al. Electrospun mesoporous titanium dioxide fibers. Micropor Mesopor Mater, 2004, 69(1–2): 77–83

    Article  CAS  Google Scholar 

  26. Zhang Y Z, Feng Y, Huang Z M, et al. Fabrication of porous electrospun nanofibres. Nanotechnology, 2006, 17(3): 901–908

    Article  CAS  Google Scholar 

  27. McCann J T, Marquez M, Xia Y. Highly porous fibers by electro-spinning into a cryogenic liquid. J Am Chem Soc, 2006, 128(5): 1436–1437

    Article  PubMed  CAS  Google Scholar 

  28. Sun Z, Zussman E, Yarin A L, et al. Compound core-shell polymer nanofibers by co-electrospinning. Adv Mater, 2003, 15(22): 1929–1932

    Article  CAS  Google Scholar 

  29. Li D, Xia Y. Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett, 2004, 4(5): 933–938

    Article  CAS  Google Scholar 

  30. Lin T, Wang H, Wang X. Self-crimping bicomponent nanofibers electrospun from polyacrylonitrile and elastomeric polyurethane. Adv Mater, 2005, 17(22): 2699–2703

    Article  CAS  Google Scholar 

  31. Barhate R S, Ramakrishna S. Nanofibrous filtering media: Filtration problems and solutions from tiny materials. J Membrane Sci, 2007, 296(1–2): 1–8

    Article  CAS  Google Scholar 

  32. Gibson P, Schreuder-Gibson H, Pentheny C. Electrospinning technology: Direct application of tailorable ultrathin membranes. J Coated Fabrics, 1998, 28(7): 63–72

    CAS  Google Scholar 

  33. Bognitzki M, Czado W, Frese T, et al. Nanostructured fibers via electrospinning. Adv Mater, 2001, 13(1): 70–72

    Article  CAS  Google Scholar 

  34. Huang Z-M, Zhang Y-Z, Kotaki M, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Comp Sci Tech, 2003, 63(15): 2223–2253

    Article  CAS  Google Scholar 

  35. Jayaraman K, Kotaki M, Zhang Y, et al. Recent advances in polymer nanofibers. J Nanosci Nanotech, 2004, 4(1–2): 52–65

    CAS  Google Scholar 

  36. Kameoka J, Czaplewski D, Liu H, et al. Polymeric nanowire architecture. J Mater Chem, 2004, 14(10): 1503

    Article  CAS  Google Scholar 

  37. Ma Z, Kotaki M, Inai R, et al. Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Eng, 2005, 11(1–2): 101–109

    Article  PubMed  Google Scholar 

  38. Wang Y K, Yong T, Ramakrishna S. Nanofibres and their Influence on cells for tissue regeneration. Austr J Chem, 2005, 58(10): 704–712

    Article  CAS  Google Scholar 

  39. Boudriot U, Dersch R, Greiner A, et al. Electrospinning approaches toward scaffold engineering-a brief overview. Artif Organs, 2006, 30(10): 785–792

    Article  PubMed  CAS  Google Scholar 

  40. Liao S, Li B, Ma Z, et al. Biomimetic electrospun nanofibers for tissue regeneration. Biomed Mater, 2006, 1(3): R45–R53

    Article  PubMed  CAS  Google Scholar 

  41. Teo W-E, He W, Ramakrishna S. Electrospun scaffold tailored for tissue-specific extracellular matrix. Biotech J, 2006, 1(9): 918–929

    Article  CAS  Google Scholar 

  42. Ashammakhi N, Ndreu A, Yang Y, et al. Tissue engineering: A new take-off using nanofiber-based scaffolds. J Craniofac Surg, 2007, 18(1): 3–17

    Article  PubMed  Google Scholar 

  43. Lannutti J, Reneker D, Ma T, et al. Electrospinning for tissue engineering scaffolds. Mater Sci Eng C, 2007, 27(3): 504–509

    Article  CAS  Google Scholar 

  44. Sell S, Barnes C, Smith M, et al. Extracellular matrix regenerated: Tissue engineering via electrospun biomimetic nanofibers. Polym Int, 2007, 56(11): 1349–1360

    Article  CAS  Google Scholar 

  45. Barnes C P, Sell S A, Boland E D, et al. Nanofiber technology: Designing the next generation of tissue engineering scaffolds. Adv Drug Deliver Rev, 2007, 59(14): 1413–1433

    Article  CAS  Google Scholar 

  46. Liang D, Hsiao B S, Chu B. Functional electrospun nanofibrous scaffolds for biomedical applications. Adv Drug Deliver Rev, 2007, 59(14): 1392–1412

    Article  CAS  Google Scholar 

  47. Kosmider K, Scott J. Polymeric nanofibres exhibit an enhanced air filtration performance. Filtr Separat, 2002, 39(6): 20–22

    Article  CAS  Google Scholar 

  48. Gibson P, Schreuder-Gibson H, Rivin D. Transport properties of porous membranes based on electrospun nanofibers. Coll Surf A: Physicochem Eng Asp, 2001, 187–188(8): 469–481

    Article  Google Scholar 

  49. Shin C, Chase G G, Reneker D H. Recycled expanded polystyrene nanofibers applied in filter media. Coll Surf A: Physicochem Eng Asp, 2005, 262(1–3): 211–215

    Article  CAS  Google Scholar 

  50. Shin C, Chase G G, Reneker D H. The effect of nanofibers on liquid-liquid coalescence filter performance. AIChE J, 2005, 51(12): 3109–3113

    Article  CAS  Google Scholar 

  51. Wang X, Chen X, Yoon K, et al. High flux filtration medium based on nanofibrous substrate with hydrophilic nanocomposite coating. Environ Sci Tech, 2005, 39(19): 7684–7691

    Article  CAS  Google Scholar 

  52. Yoon K, Kim K, Wang X, et al. High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating. Polymer, 2006, 47(7): 2434–2441

    Article  CAS  Google Scholar 

  53. Barhate R S, Loong C K, Ramakrishna S. Preparation and characterization of nanofibrous filtering media. J Membrane Sci, 2006, 283(1–2): 209–218

    Article  CAS  Google Scholar 

  54. Gopal R, Kaur S, Ma Z, et al. Electrospun nanofibrous filtration membrane. J Membrane Sci, 2006, 281(1–2): 581–586

    Article  CAS  Google Scholar 

  55. Gopal R, Kaur S, Feng C Y, et al. Electrospun nanofibrous polysulfone membranes as pre-filters: Particulate removal. J Membrane Sci, 2007, 289(1–2): 210–219

    Article  CAS  Google Scholar 

  56. Ma Z, Kotaki M, Ramakrishna S. Surface modified nonwoven polysulphone (PSU) fiber mesh by electrospinning: A novel affinity membrane. J Membrane Sci, 2006, 272(1–2): 179–187

    Article  CAS  Google Scholar 

  57. Ki C S, Gang E H, Um I C, et al. Nanofibrous membrane of wool keratose/silk fibroin blend for heavy metal ion adsorption. J Membrane Sci, 2007, 302(1–2): 20–26

    Article  CAS  Google Scholar 

  58. Wang H, Ding J, Lee B, et al. Polypyrrole-coated electrospun nanofibre membranes for recovery of Au(III) from aqueous solution. J Membrane Sci, 2007, 303(1–2): 119–125

    Article  CAS  Google Scholar 

  59. Nerem R M, Saltzman A. Tissue engineering: From biology to biological substitutes. Tissue Eng, 1995, 1(1): 3–13

    Article  PubMed  CAS  Google Scholar 

  60. Ma P X. Tissue Engineering. In: Encyclopedia of Polymer Science and Technology. NJ: John Wiley & Sons, 2004

    Google Scholar 

  61. Hay E D. Cell Biology of Extracellular Matrix. NY: Plenum Press, 1991

    Book  Google Scholar 

  62. Elsdale T, Bard J. Collagen substrata for studies on cell behavior. J Cell Biol, 1972, 54(3): 626–637

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  63. Chiu J B, Liu C, Hsiao B S, et al. Functionalization of poly(L-lactide) nanofibrous scaffolds with bioactive collagen molecules. J Biomed Mater Res Part A, 2007, 83A(4): 1117–1127

    Article  CAS  Google Scholar 

  64. Venugopal J, Low S, Choon A T, et al. Interaction of cells and nanofiber scaffolds in tissue engineering. J Biomed Mater Res Part B: Appl Biomater, 2008, 84B(1): 34–48

    Article  CAS  Google Scholar 

  65. Zhang Y, Lim C T, Ramakrishna S, et al. Recent development of polymer nanofibers for biomedical and biotechnological applications. J Mater Sci: Mater Med, 2005, 16(10): 933–946

    Article  CAS  Google Scholar 

  66. Matthews J A, Wnek G E, Simpson D G, et al. Electrospinning of Collagen Nanofibers. Biomacromolecules, 2002, 3(2): 232–238

    Article  PubMed  CAS  Google Scholar 

  67. Kenawy E-R, Layman J M, Watkins J R, et al. Electrospinning of poly(ethylene-co-vinyl alcohol) fibers. Biomaterials, 2003, 24(6): 907–913

    Article  CAS  Google Scholar 

  68. Stankus J J, Guan J, Wagner W R. Fabrication of biodegradable elastomeric scaffolds with sub-micron morphologies. J Biomed Mater Res Part A, 2004, 70A(4): 603–614

    Article  CAS  Google Scholar 

  69. Mo X M, Xu C Y, Kotaki M, et al. Electrospun P(LLA-CL) nanofiber: A biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials, 2004, 25(10): 1883–1890

    Article  PubMed  CAS  Google Scholar 

  70. Venugopal J, Zhang Y Z, Ramakrishna S. Fabrication of modified and functionalized polycaprolactone nanofibre scaffolds for vascular tissue engineering. Nanotechnology, 2005, 16(10): 2138–2142

    Article  CAS  PubMed  Google Scholar 

  71. Baker S C, Atkin N, Gunning P A, et al. Characterisation of electrospun polystyrene scaffolds for three-dimensional in vitro biological studies. Biomaterials, 2006, 27(16): 3136–3146

    Article  PubMed  CAS  Google Scholar 

  72. Riboldi S A, Sampaolesi M, Neuenschwander P, et al. Electrospun degradable polyesterurethane membranes: Potential scaffolds for skeletal muscle tissue engineering. Biomaterials, 2005, 26(22): 4606–4615

    Article  PubMed  CAS  Google Scholar 

  73. Li W-J, Laurencin C T, Caterson E J, et al. Electrospun nanofibrous structure: A novel scaffold for tissue engineering. J Biomed Mater Res, 2002, 60(4): 613–621

    Article  PubMed  CAS  Google Scholar 

  74. Yoshimoto H, Shin Y M, Terai H, et al. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials, 2003, 24(12): 2077–2082

    Article  PubMed  CAS  Google Scholar 

  75. Li W-J, Tuli R, Huang X, et al. Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials, 2005, 26(25): 5158–5166

    Article  PubMed  CAS  Google Scholar 

  76. Shin M, Yoshimoto H, Vacanti J P. In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold. Tissue Eng, 2004, 10(1–2): 33–41

    Article  PubMed  CAS  Google Scholar 

  77. Zhang Y, Ouyang H, Lim C T, et al. Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res Part B: Appl Biomater, 2005, 72B(1): 156–165

    Article  CAS  Google Scholar 

  78. Fujihara K, Kotaki M, Ramakrishna S. Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers. Biomaterials, 2005, 26(19): 4139–4147

    Article  PubMed  CAS  Google Scholar 

  79. Wutticharoenmongkol P, Sanchavanakit N, Pavasant P, et al. Novel bone scaffolds of electrospun polycaprolactone fibers filled with nanoparticles. J Nanosci Nanotech, 2006, 6(2): 514–522

    Article  CAS  Google Scholar 

  80. Wutticharoenmongkol P, Sanchavanakit N, Pavasant P, et al. Preparation and characterization of novel bone scaffolds based on electrospun polycaprolactone fibers filled with nanoparticles. Macromolecul Biosci, 2006, 6(1): 70–77

    Article  CAS  Google Scholar 

  81. Wutticharoenmongkol P, Pavasant P, Supaphol P. Osteoblastic phenotype expression of MC3T3-E1 cultured on electrospun polycaprolactone fiber mats filled with hydroxyapatite nanoparticles. Biomacromolecules, 2007, 8(8): 2602–2610

    Article  PubMed  CAS  Google Scholar 

  82. Duan B, Wu L, Li X, et al. Degradation of electrospun PLGA-chitosan/PVA membranes and their cytocompatibility in vitro. J Biomater Sci Polym Edit, 2007, 18(1): 95–115

    Article  CAS  Google Scholar 

  83. Tuzlakoglu K, Bolgen N, Salgado A J, et al. Nano-and micro-fiber combined scaffolds: A new architecture for bone tissue engineering. J Mater Sci: Mater Med, 2005, 16(12): 1099–1104

    Article  CAS  Google Scholar 

  84. Pham Q P, Sharma U, Mikos A G. Electrospun poly(e-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: Characterization of scaffolds and measurement of cellular infiltration. Biomacromolecules, 2006, 7(10): 2796–2805

    Article  PubMed  CAS  Google Scholar 

  85. Jin H J, Chen J, Karageorgiou V, et al. Human bone marrow stromal cell responses on electrospun silk fibroin mats. Biomaterials, 2004, 25(6): 1039–1047

    Article  PubMed  CAS  Google Scholar 

  86. Kim K-H, Jeong L, Park H-N, et al. Biological efficacy of silk fibroin nanofiber membranes for guided bone regeneration. J Biotech, 2005, 120(3): 327–339

    Article  CAS  Google Scholar 

  87. Xu X, Zhuang X, Chen X, et al. Preparation of core-sheath composite nanofibers by emulsion electrospinning. Macromol Rapid Comm, 2006, 27(19): 1637–1642

    Article  CAS  Google Scholar 

  88. Kim K, Yu M, Zong X, et al. Control of degradation rate and hydrophilicity in electrospun non-woven poly(d,l-lactide) nanofiber scaffolds for biomedical applications. Biomaterials, 2003, 24(27): 4977–4985

    Article  PubMed  CAS  Google Scholar 

  89. Henry J A, Simonet M, Pandit A, et al. Characterization of a slowly degrading biodegradable polyesterurethane for tissue engineering scaffolds. J Biomed Mater Res Part A, 2007, 82A(3): 669–679

    Article  CAS  Google Scholar 

  90. Nair L S, Bhattacharyya S, Bender J D, et al. Fabrication and optimization of methylphenoxy substituted polyphosphazene nanofibers for biomedical applications. Biomacromolecules, 2004, 5(6): 2212–2220

    Article  PubMed  CAS  Google Scholar 

  91. Badami A S, Kreke M R, Thompson M S, et al. Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid) substrates. Biomaterials, 2006, 27(4): 596–606

    Article  PubMed  CAS  Google Scholar 

  92. Lee Y H, Lee J H, An I-G, et al. Electrospun dual-porosity structure and biodegradation morphology of Montmorillonite reinforced PLLA nanocomposite scaffolds. Biomaterials, 2005, 26(16): 3165–3172

    Article  PubMed  CAS  Google Scholar 

  93. Sakai S, Yamada Y, Yamaguchi T, et al. Prospective use of electrospun ultra-fine silicate fibers for bone tissue engineering. Biotech J, 2006, 1(9): 958–962

    Article  CAS  Google Scholar 

  94. Moroni L, Licht R, De Boer J, et al. Fiber diameter and texture of electrospun PEOT/PBT scaffolds influence human mesenchymal stem cell proliferation and morphology, and the release of incorporated compounds. Biomaterials, 2006, 27(28): 4911–4922

    Article  PubMed  CAS  Google Scholar 

  95. Zhang J, Qi H, Wang H, et al. Engineering of vascular grafts with genetically modified bone marrow mesenchymal stem cells on poly (propylene carbonate) graft. Artif Organs, 2006, 30(12): 898–905

    Article  PubMed  CAS  Google Scholar 

  96. Sombatmankhong K, Sanchavanakit N, Pavasant P, et al. Bone scaffolds from electrospun fiber mats of poly(3-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and their blend. Polymer, 2007, 48(5): 1419–1427

    Article  CAS  Google Scholar 

  97. Xin X, Hussain M, Mao Jeremy J. Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrospun PLGA nanofiber scaffold. Biomaterials, 2007, 28(2): 316–325

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  98. Deng X-L, Sui G, Zhao M-L, et al. Poly(L-lactic acid)/hydroxyapatite hybrid nanofibrous scaffolds prepared by electrospinning. J Biomater Sci Polym Edit, 2007, 18(1): 117–130

    Article  CAS  Google Scholar 

  99. Matthews J A, Boland E D, Wnek G E, et al. Electrospinning of collagen type II: A feasibility study. J Bioact Compat Polym, 2003, 18(2): 125–134

    Article  CAS  Google Scholar 

  100. Shields K J, Beckman M J, Bowlin G L, et al. Mechanical properties and cellular proliferation of electrospun collagen type II. Tissue Eng, 2004, 10(9–10): 1510–1517

    Article  PubMed  CAS  Google Scholar 

  101. Li W-J, Danielson K G, Alexander P G, et al. Biological response of chondrocytes cultured in three-dimensional nanofibrous poly(ɛ-caprolactone) scaffolds. J Biomed Mater Res Part A, 2003, 67A(4): 1105–1114

    Article  CAS  Google Scholar 

  102. Lee I S, Kwon O H, Meng W, et al. Nanofabrication of microbial polyester by electrospinning promotes cell attachment. Macromol Res, 2004, 12(4): 374–378

    Article  CAS  Google Scholar 

  103. Kwon O H, Lee I S, Ko Y-G, et al. electrospinning of microbial polyester for cell culture. Biomed Mater, 2007, 2(1): S52–S58

    Article  PubMed  CAS  Google Scholar 

  104. Subramanian A, Vu D, Larsen G F, et al. Preparation and evaluation of the electrospun chitosan/PEO fibers for potential applications in cartilage tissue engineering. J Biomater Sci, Polym Edit, 2005, 16(7): 861–873

    Article  CAS  Google Scholar 

  105. Bhattarai N, Edmondson D, Veiseh O, et al. Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials, 2005, 26(31): 6176–6184

    Article  PubMed  CAS  Google Scholar 

  106. Shin H J, Lee C H, Cho I H, et al. Electrospun PLGA nanofiber scaffolds for articular cartilage reconstruction: Mechanical stability, degradation and cellular responses under mechanical stimulation in vitro. J Biomater Sci Polym Edit, 2006, 17(1–2): 103–119

    Article  CAS  Google Scholar 

  107. Min B-M, Lee G, Kim S H, et al. Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials, 2003, 25(7–8): 1289–1297

    Google Scholar 

  108. Chang Seok Ki J W K, Jin Ho Hyun, Ki Hoon Lee, Masahiro Hattori, Dong Kyun Rah, Young Hwan Park, Electrospun three-dimensional silk fibroin nanofibrous scaffold. J Appl Polym Sci, 2007, 106(6): 3922–3928

    Article  CAS  Google Scholar 

  109. Zhong S, Teo W E, Zhu X, et al. An aligned nanofibrous collagen scaffold by electrospinning and its effects on in vitro fibroblast culture. J Biomed Mater Res Part A, 2006, 79A(3): 456–463

    Article  CAS  Google Scholar 

  110. Rho K S, Jeong L, Lee G, et al. Electrospinning of collagen nanofibers: Effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials, 2006, 27(8): 1452–1461

    Article  PubMed  CAS  Google Scholar 

  111. Zhong S P, Teo W E, Zhu X, et al. Development of a novel collagen-GAG nanofibrous scaffold via electrospinning. Mater Sci Eng C: Biomim Supramol Syst, 2007, 27(2): 262–266

    Article  CAS  Google Scholar 

  112. Meng W, Kim S-Y, Yuan J, et al. Electrospun PHBV/collagen composite nanofibrous scaffolds for tissue engineering. J Biomater Sci Polym Edit, 2007, 18(1): 81–94

    Article  Google Scholar 

  113. Zhang Y Z, Venugopal J, Huang Z M, et al. Crosslinking of the electrospun gelatin nanofibers. Polymer, 2006, 47(8): 2911–2917

    Article  CAS  Google Scholar 

  114. Duan B, Wu L, Yuan X, et al. Hybrid nanofibrous membranes of PLGA/chitosan fabricated via an electrospinning array. J Biomed Mater Res Part A, 2007, 83A(3): 868–878

    Article  CAS  Google Scholar 

  115. Ji Y, Ghosh K, Shu X Z, et al. Electrospun three-dimensional hyaluronic acid nanofibrous scaffolds. Biomaterials, 2006, 27(20): 3782–3792

    Article  PubMed  CAS  Google Scholar 

  116. Ji Y, Ghosh K, Li B, et al. Dual-syringe reactive electrospinning of cross-linked hyaluronic acid hydrogel nanofibers for tissue engineering applications. Macromol Biosci, 2006, 6(10): 811–817

    Article  PubMed  CAS  Google Scholar 

  117. Pan H, Jiang H, Chen W. Interaction of dermal fibroblasts with electrospun composite polymer scaffolds prepared from dextran and poly(lactide-co-glycolide). Biomaterials, 2006, 27(17): 3209–3220

    Article  PubMed  CAS  Google Scholar 

  118. Bhattarai S R, Bhattarai N, Viswanathamurthi P, et al. Hydrophilic nanofibrous structure of polylactide: Fabrication and cell affinity. J Biomed Mater Res Part A, 2006, 78A(2): 247–257

    Article  CAS  Google Scholar 

  119. Sun T, Norton D, McKean R J, et al. Development of a 3D cell culture system for investigating cell interactions with electrospun fibers. Biotech Bioeng, 2007, 97(5): 1318–1328

    Article  CAS  Google Scholar 

  120. Park K, Jung H J, Kim J-J, et al. Acrylic acid-grafted hydrophilic electrospun nanofibrous poly(L-lactic acid) scaffold. Macromol Res, 2006, 14(5): 552–558

    Article  CAS  Google Scholar 

  121. Park K, Ju Y M, Son J S, et al. Surface modification of biodegradable electrospun nanofiber scaffolds and their interaction with fibroblasts. J Biomater Sci Polym Edit, 2007, 18(4): 369–382

    Article  CAS  Google Scholar 

  122. Spasova M, Stoilova O, Manolova N, et al. Preparation of PLLA/PEG nanofibers by electrospinning and potential applications. J Bioact Comp Polym, 2007, 22(1): 62–76

    Article  CAS  Google Scholar 

  123. Zhang Y Z, Venugopal J, Huang Z M, et al. Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts. Biomacromolecules, 2005, 6(5): 2583–2589

    Article  PubMed  CAS  Google Scholar 

  124. Venugopal J R, Zhang Y, Ramakrishna S. In vitro culture of human dermal fibroblasts on electrospun polycaprolactone collagen nanofibrous membrane. Artif Organs, 2006, 30(6): 440–446

    Article  PubMed  CAS  Google Scholar 

  125. Chen M, Patra P K, Warner S B, et al. Optimization of electrospinning process parameters for tissue engineering scaffolds. Biophys Rev Lett, 2006, 1(2): 189–214

    Article  CAS  Google Scholar 

  126. Kim G, Kim W. Highly porous 3D nanofiber scaffold using an electrospinning technique. J Biomed Mater Res Part B: Appl Biomater, 2007, 81B(1): 104–110

    Article  CAS  Google Scholar 

  127. Chen M, Patra P K, Warner S B, et al. Role of fiber diameter in adhesion and proliferation of NIH 3T3 fibroblast on electrospun polycaprolactone scaffolds. Tissue Eng, 2007, 13(3): 579–587

    Article  PubMed  CAS  Google Scholar 

  128. Bhattarai S R, Bhattarai N, Yi H K, et al. Novel biodegradable electrospun membrane: scaffold for tissue engineering. Biomaterials, 2004, 25(13): 2595–2602

    Article  PubMed  CAS  Google Scholar 

  129. Jin H-J, Hwang M-O, Yoon J S, et al. Preparation and characterization of electrospun poly(L-lactic acid-co-succinic acid-co-1,4-butane diol) fibrous membranes. Macromol Res, 2005, 13(1): 73–79

    Article  CAS  Google Scholar 

  130. Suwantong O, Waleetorncheepsawat S, Sanchavanakit N, et al. In vitro biocompatibility of electrospun poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fiber mats. International J Biol Macromol, 2007, 40(3): 217–223

    Article  CAS  Google Scholar 

  131. Khanam N, Mikoryak C, Draper R K, et al. Electrospun linear polyethyleneimine scaffolds for cell growth. Acta Biomater, 2007, 3(6): 1050–1059

    Article  PubMed  CAS  Google Scholar 

  132. Zhao P, Jiang H, Pan H, et al. Biodegradable fibrous scaffolds composed of gelatin coated poly(ɛ-caprolactone) prepared by coaxial electrospinning. J Biomed Mater Res Part A, 2007, 83A(2): 372–382

    Article  CAS  Google Scholar 

  133. Duan B, Yuan X, Zhu Y, et al. A nanofibrous composite membrane of PLGA-chitosan/PVA prepared by electrospinning. Europ Polym J, 2006, 42(9): 2013–2022

    Article  CAS  Google Scholar 

  134. Kim T G, Park T G. Biomimicking extracellular matrix: Cell adhesive RGD peptide modified electrospun poly(D,L-lactic-co-glycolic acid) nanofiber mesh. Tissue Eng, 2006, 12(2): 221–233

    Article  PubMed  CAS  Google Scholar 

  135. Xu C, Yang F, Wang S, et al. In vitro study of human vascular endothelial cell function on materials with various surface roughness. J Biomed Mater Res Part A, 2004, 71A(1): 154–161

    Article  CAS  Google Scholar 

  136. Rubenstein D, Han D, Goldgraben S, et al. Bioassay chamber for angiogenesis with perfused explanted arteries and electrospun scaffolding. Microcirculation, 2007, 14(7): 723–737

    Article  PubMed  CAS  Google Scholar 

  137. Vaz C M, van Tuijl S, Bouten C V C, et al. Design of scaffolds for blood vessel tissue engineering using a multi-layering electrospinning technique. Acta Biomater, 2005, 1(5): 575–582

    Article  PubMed  CAS  Google Scholar 

  138. Ma Z, He W, Yong T, et al. Grafting of gelatin on electrospun poly(ɛ-caprolactone) nanofibers to improve endothelial cell spreading and proliferation and to control cell orientation. Tissue Eng, 2005, 11(7–8): 1149–1158

    Article  PubMed  CAS  Google Scholar 

  139. Ma Z, Kotaki M, Yong T, et al. Surface engineering of electrospun polyethylene terephthalate (PET) nanofibers towards development of a new material for blood vessel engineering. Biomaterials, 2005, 26(15): 2527–2536

    Article  PubMed  CAS  Google Scholar 

  140. Casper C L, Yang W, Farach-Carson M C, et al. Coating electrospun collagen and gelatin fibers with perlecan domain I for increased growth factor binding. Biomacromolecules, 2007, 8(4): 1116–1123

    Article  PubMed  CAS  Google Scholar 

  141. Zhu Y, Leong Meng F, Ong Wey F, et al. Esophageal epithelium regeneration on fibronectin grafted poly(L-lactide-co-caprolactone) (PLLC) nanofiber scaffold. Biomaterials, 2007, 28(5): 861–868

    Article  PubMed  CAS  Google Scholar 

  142. Sell S A, McClure M J, Barnes C P, et al. Electrospun polydioxanone-elastin blends: Potential for bioresorbable vascular grafts. Biomed Mater, 2006, 1(2): 72–80

    Article  PubMed  CAS  Google Scholar 

  143. Lee S J, Yoo J J, Lim G J, et al. In vitro evaluation of electrospun nanofiber scaffolds for vascular graft application. J Biomed Mater Res Part A, 2007, 83A(4): 999–1008

    Article  CAS  Google Scholar 

  144. Stankus J J, Soletti L, Fujimoto K, et al. Fabrication of cell microintegrated blood vessel constructs through electrohydrodynamic atomization. Biomaterials, 2007, 28(17): 2738–2746

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  145. Stitzel J, Liu J, Lee S J, et al. Controlled fabrication of a biological vascular substitute. Biomaterials, 2006, 27(7): 1088–1094

    Article  PubMed  CAS  Google Scholar 

  146. Telemeco T A, Ayres C, Bowlin G L, et al. Regulation of cellular infiltration into tissue engineering scaffolds composed of submicron diameter fibrils produced by electrospinning. Acta biomater, 2005, 1(4): 377–385

    Article  PubMed  CAS  Google Scholar 

  147. Carampin P, Conconi M T, Lora S, et al. Electrospun polyphosphazene nanofibers for in vitro rat endothelial cells proliferation. J Biomed Mater Res Part A, 2007, 80A(3): 661–668

    Article  CAS  Google Scholar 

  148. Kwon I K, Kidoaki S, Matsuda T. Electrospun nano-to microfiber fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential. Biomaterials, 2005, 26(18): 3929–3939

    Article  PubMed  CAS  Google Scholar 

  149. Yang F, Xu C Y, Kotaki M, et al. Characterization of neural stem cells on electrospun poly(L-lactic acid) nanofibrous scaffold. J Biomater Sci Polym Edit, 2004, 15(12): 1483–1497

    Article  CAS  Google Scholar 

  150. Yang F, Murugan R, Wang S, et al. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials, 2005, 26(15): 2603–2610

    Article  PubMed  CAS  Google Scholar 

  151. Sangsanoh P, Waleetorncheepsawat S, Suwantong O, et al. In vitro biocompatibility of schwann cells on surfaces of biocompatible polymeric electrospun fibrous and solution-cast film scaffolds. Biomacromolecules, 2007, 8(5): 1587–1594

    Article  PubMed  CAS  Google Scholar 

  152. Schnell E, Klinkhammer K, Balzer S, et al. Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly(e-caprolactone) and a collagen/poly(e-caprolactone) blend. Biomaterials, 2007, 28(19): 3012–3025

    Article  PubMed  CAS  Google Scholar 

  153. Bini T B, Gao S, Tan T C, et al. Electrospun poly(L-lactide-coglycolide) biodegradable polymer nanofiber tubes for peripheral nerve regeneration. Nanotechnology, 2004, 15(11): 1459–1464

    Article  CAS  Google Scholar 

  154. Bini T B, Gao S, Wang S, et al. Poly(l-lactide-co-glycolide) biodegradable microfibers and electrospun nanofibers for nerve tissue engineering: An in vitro study. J Mater Sci, 2006, 41(19): 6453–6459

    Article  CAS  Google Scholar 

  155. Ito Y, Hasuda H, Kamitakahara M, et al. A composite of hydroxyapatite with electrospun biodegradable nanofibers as a tissue engineering material. J Biosci Bioeng, 2005, 100(1): 43–49

    Article  PubMed  CAS  Google Scholar 

  156. Li M, Mondrinos M J, Gandhi M R, et al. Electrospun protein fibers as matrices for tissue engineering. Biomaterials, 2005, 26(30): 5999–6008

    Article  PubMed  CAS  Google Scholar 

  157. Boudriot U, Goetz B, Dersch R, et al. Role of electrospun nanofibers in stem cell technologies and tissue engineering. Macromol Symp, 2005, 225(1): 9–16

    Article  CAS  Google Scholar 

  158. Kang X, Xie Y, Powell H M, et al. Adipogenesis of murine embryonic stem cells in a three-dimensional culture system using electrospun polymer scaffolds. Biomaterials, 2007, 28(3): 450–458

    Article  PubMed  CAS  Google Scholar 

  159. Meechaisue C, Dubin R, Supaphol P, et al. Electrospun mat of tyrosine-derived polycarbonate fibers for potential use as tissue scaffolding material. J Biomater Sci Polym Edit, 2006, 17(9): 1039–1056

    Article  CAS  Google Scholar 

  160. Chua K-N, Chai C, Lee P-C, et al. Surface-aminated electrospun nanofibers enhance adhesion and expansion of human umbilical cord blood hematopoietic stem/progenitor cells. Biomaterials, 2006, 27(36): 6043–6051

    Article  PubMed  CAS  Google Scholar 

  161. Zong X, Bien H, Chung C-Y, et al. Electrospun fine-textured scaffolds for heart tissue constructs. Biomaterials, 2005, 26(26): 5330–5338

    Article  PubMed  CAS  Google Scholar 

  162. Li M, Guo Y, Wei Y, et al. Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications. Biomaterials, 2006, 27(13): 2705–2715

    Article  PubMed  CAS  Google Scholar 

  163. Lee C H, Shin H J, Cho I H, et al. Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials, 2005, 26(11): 1261–1270

    Article  PubMed  CAS  Google Scholar 

  164. Bashur C A, Dahlgren L A, Goldstein A S. Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly(D,L-lactic-co-glycolic acid) meshes. Biomaterials, 2006, 27(33): 5681–5688

    Article  PubMed  CAS  Google Scholar 

  165. Marler J J, Upton J, Langer R, et al. Transplantation of cells in matrixes for tissue regeneration. Adv Drug Deliver Rev, 1998, 33(1–2): 165–182

    Article  CAS  Google Scholar 

  166. Khil M-s, Cha D-i, Kim H-y, et al. Electrospun nanofibrous polyurethane membrane as wound dressing. J Biomed Mater Res Part B: Appl Biomater, 2003, 67B(2): 675–679

    Article  CAS  Google Scholar 

  167. Noh H K, Lee S W, Kim J-M, et al. Electrospinning of chitin nanofibers: Degradation behavior and cellular response to normal human keratinocytes and fibroblasts. Biomaterials, 2006, 27(21): 3934–3944

    Article  PubMed  CAS  Google Scholar 

  168. Ignatova M, Manolova N, Rashkov I. Electrospinning of poly(vinyl pyrrolidone)-iodine complex and poly(ethylene oxide)/poly(vinyl pyrrolidone)-iodine complex—a prospective route to antimicrobial wound dressing materials. Europ Polym J, 2007, 43(5): 1609–1623

    Article  CAS  Google Scholar 

  169. Chong E J, Phan T T, Lim I J, et al. Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomater, 2007, 3(3): 321–330

    Article  PubMed  CAS  Google Scholar 

  170. Choi J S, Leong K W, Yoo H S. In vivo wound healing of diabetic ulcers using electrospun nanofibers immobilized with human epidermal growth factor (EGF). Biomaterials, 2008, 29(5): 587–596

    Article  PubMed  CAS  Google Scholar 

  171. DeCherney A H, DiZerega G S. Clinical problem of intraperitoneal postsurgical adhesion formation following general surgery and the use of adhesion prevention barriers. Surg Clinics North Am, 1997, 77(3): 671–688

    Article  CAS  Google Scholar 

  172. Menzies D. Peritoneal adhesions. Incidence, cause, and prevention. Surg Ann, 1992, 24: 27–45

    Google Scholar 

  173. Bolgen N, Vargel I, Korkusuz P, et al. In vivo performance of antibiotic embedded electrospun PCL membranes for prevention of abdominal adhesions. J Biomed Mater Res Part B: Appl Biomater, 2007, 81B(2): 530–543

    Article  CAS  Google Scholar 

  174. Hong K H. Preparation and properties of electrospun poly(vinyl alcohol)/silver fiber web as wound dressings. Polymer Eng Sci, 2007, 47(1): 43–49

    Article  CAS  Google Scholar 

  175. Jia J, Duan Y-y, Wang S-h, et al. Preparation and characterization of antibacterial silver-containing nanofibers for wound dressing applications. J US-China Med Sci, 2007, 4(2): 52–54

    Google Scholar 

  176. Lala N L, Ramaseshan R, Li B, et al. Fabrication of nanofibers with antimicrobial functionality used as filters: protection against bacterial contaminants. Biotech Bioeng, 2007, 97(6): 1357–1365

    Article  CAS  Google Scholar 

  177. Spadaro J A, Berger T J, Barranco S D, et al. Antibacterial effects of silver electrodes with weak direct current. Antimicrob Agents Chemother, 1974, 6(5): 637–642

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  178. Jeong E H, Yang J, Youk J H. Preparation of polyurethane cationomer nanofiber mats for use in antimicrobial nanofilter applications. Mater Lett, 2007, 61(18): 3991–3994

    Article  CAS  Google Scholar 

  179. Yih T C, Al-Fandi M. Engineered nanoparticles as precise drug delivery systems. J Cell Biochem, 2006, 97(6): 1184–1190

    Article  PubMed  CAS  Google Scholar 

  180. Kenawy E-R, Bowlin G L, Mansfield K, et al. Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend. J Contr Rel, 2002, 81(1–2): 57–64

    Article  CAS  Google Scholar 

  181. Luong-Van E, Grondahl L, Chua K N, et al. Controlled release of heparin from poly(e-caprolactone) electrospun fibers. Biomaterials, 2006, 27(9): 2042–2050

    Article  PubMed  CAS  Google Scholar 

  182. Jiang H, Hu Y, Zhao P, et al. Modulation of protein release from biodegradable core-shell structured fibers prepared by coaxial electrospinning. J Biomed Mater Res Part B: Appl Biomater, 2006, 79B(1): 50–57

    Article  CAS  Google Scholar 

  183. Zong X, Kim K, Fang D, et al. Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer, 2002, 43(16): 4403–4412

    Article  CAS  Google Scholar 

  184. Zeng J, Xu X, Chen X, et al. Biodegradable electrospun fibers for drug delivery. J Contr Rel, 2003, 92(3): 227–231

    Article  CAS  Google Scholar 

  185. Xu X, Yang L, Xu X, et al. Ultrafine medicated fibers electrospun from W/O emulsions. J Contr Rel, 2005, 108(1): 33–42

    Article  CAS  Google Scholar 

  186. Qi H, Hu P, Xu J, et al. Encapsulation of drug reservoirs in fibers by emulsion electrospinning: morphology characterization and preliminary release assessment. Biomacromolecules, 2006, 7(8): 2327–2330

    Article  PubMed  CAS  Google Scholar 

  187. Luu Y K, Kim K, Hsiao B S, et al. Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers. J Contr Rel, 2003, 89(2): 341–353

    Article  CAS  Google Scholar 

  188. Kim K, Luu Y K, Chang C, et al. Incorporation and controlled release of a hydrophilic antibiotic using poly(lactide-co-glycolide)-based electrospun nanofibrous scaffolds. J Contr Rel, 2004, 98(1): 47–56

    Article  CAS  Google Scholar 

  189. Taepaiboon P, Rungsardthong U, Supaphol P. Drug-loaded electrospun mats of poly(vinyl alcohol) fibres and their release characteristics of four model drugs. Nanotechnology, 2006, 17(9): 2317–2329

    Article  CAS  Google Scholar 

  190. Yang D, Li Y, Nie J. Preparation of gelatin/PVA nanofibers and their potential application in controlled release of drugs. Carbohydr Polym, 2007, 69(3): 538–543

    Article  CAS  Google Scholar 

  191. Kenawy E-R, Abdel-Hay F I, El-Newehy M H, et al. Controlled release of ketoprofen from electrospun poly(vinyl alcohol) nanofibers. Mater Sci Eng A: Struct Mater Prop Microstruct Proc, 2007, A459(1–2): 390–396

    Article  CAS  Google Scholar 

  192. Jiang H, Fang D, Hsiao B, et al. Preparation and characterization of ibuprofen-loaded poly(lactide-co-glycolide)/poly(ethylene glycol)-g-chitosan electrospun membranes. J Biomater Sci Polym Edit, 2004, 15(3): 279–296

    Article  CAS  Google Scholar 

  193. Kim T G, Lee D S, Park T G. Controlled protein release from electrospun biodegradable fiber mesh composed of poly(e-caprolactone) and poly(ethylene oxide). Int J Pharm, 2007, 338(1–2): 276–283

    Article  PubMed  CAS  Google Scholar 

  194. Verreck G, Chun I, Rosenblatt J, et al. Incorporation of drugs in an amorphous state into electrospun nanofibers composed of a water-insoluble, nonbiodegradable polymer. J Contr Rel, 2003, 92(3): 349–360

    Article  CAS  Google Scholar 

  195. Verreck G, Chun I, Peeters J, et al. Preparation and characterization of nanofibers containing amorphous drug dispersions generated by electrostatic spinning. Pharm Res, 2003, 20(5): 810–817

    Article  PubMed  CAS  Google Scholar 

  196. Cui W, Li X, Zhu X, et al. Investigation of drug release and matrix degradation of electrospun poly(DL-lactide) fibers with paracetanol inoculation. Biomacromolecules, 2006, 7(5): 1623–1629

    Article  PubMed  CAS  Google Scholar 

  197. Xie J, Wang C. Electrospun micro-and nanofibers for sustained delivery of paclitaxel to treat C6 glioma in vitro. Pharm Res, 2006, 23(8): 1817–1826

    Article  PubMed  CAS  Google Scholar 

  198. Wang M, Wang L, Huang Y. Electrospun hydroxypropyl methyl cellulose phthalate (HPMCP)/erythromycin fibers for targeted release in intestine. J Appl Polym Sci, 2007, 106(4): 2177–2184

    Article  CAS  Google Scholar 

  199. Tungprapa S, Jangchud I, Supaphol P. Release characteristics of four model drugs from drug-loaded electrospun cellulose acetate fiber mats. Polymer, 2007, 48(17): 5030–5041

    Article  CAS  Google Scholar 

  200. Pornsopone V, Supaphol P, Rangkupan R, et al. Electrospun methacrylate-based copolymer/indomethacin fibers and their release characteristics of indomethacin. J Polym Res, 2007, 14(1): 53–59

    Article  CAS  Google Scholar 

  201. Zeng J, Aigner A, Czubayko F, et al. Poly(vinyl alcohol) nanofibers by electrospinning as a protein delivery system and the retardation of enzyme release by additional polymer coatings. Biomacromolecules, 2005, 6(3): 1484–1488

    Article  PubMed  CAS  Google Scholar 

  202. Chunder A, Sarkar S, Yu Y, et al. Fabrication of ultrathin polyelectrolyte fibers and their controlled release properties. Coll Surf B: Biointerf, 2007, 58(2): 172–179

    Article  CAS  Google Scholar 

  203. Jiang H, Hu Y, Li Y, et al. A facile technique to prepare biodegradable coaxial electrospun nanofibers for controlled release of bioactive agents. J Contr Rel, 2005, 108(2–3): 237–243

    Article  CAS  Google Scholar 

  204. Chew S Y, Wen J, Yim E K F, et al. Sustained release of proteins from electrospun biodegradable fibers. Biomacromolecules, 2005, 6(4): 2017–2024

    Article  PubMed  CAS  Google Scholar 

  205. Zeng J, Yang L, Liang Q, et al. Influence of the drug compatibility with polymer solution on the release kinetics of electrospun fiber formulation. J Contr Rel, 2005, 105(1–2): 43–51

    Article  CAS  Google Scholar 

  206. Huang Z-M, He C-L, Yang A, et al. Encapsulating drugs in biodegradable ultrafine fibers through co-axial electrospinning. J Biomed Mater Res Part A, 2006, 77A(1): 169–179

    Article  CAS  Google Scholar 

  207. Zhang Y Z, Wang X, Feng Y, et al. Coaxial electrospinning of (fluorescein isothiocyanate-conjugated bovine serum albumin)-encapsulated poly(e-caprolactone) nanofibers for sustained release. Biomacromolecules, 2006, 7(4): 1049–1057

    Article  PubMed  CAS  Google Scholar 

  208. Taepaiboon P, Rungsardthong U, Supaphol P. Effect of cross-linking on properties and release characteristics of sodium salicylate-loaded electrospun poly(vinyl alcohol) fibre mats. Nanotechnology, 2007, 18(17): 175102

    Google Scholar 

  209. Demir M M, Gulgun M A, Menceloglu Y Z, et al. Palladium nanoparticles by electrospinning from poly(acrylonitrile-co-acrylic acid)-PdCl2 solutions. Relations between preparation conditions, particle size, and catalytic activity. Macromolecules, 2004, 37(5): 1787–1792

    Article  CAS  Google Scholar 

  210. Yu J, Liu T. Preparation of nano-fiber supported palladium catalysts and their use for the catalytic hydrogenation of olefins. Acta Polym Sin, 2007, (6): 514–518

  211. Patel A C, Li S, Wang C, et al. Electrospinning of porous silica nanofibers containing silver nanoparticles for catalytic applications. Chem Mater, 2007, 19(6): 1231–1238

    Article  CAS  Google Scholar 

  212. Stasiak M, Studer A, Greiner A, et al. Polymer fibers as carriers for homogeneous catalysts. Chem A Europ J, 2007, 13(21): 6150–6156

    Article  CAS  Google Scholar 

  213. Chen L, Bromberg L, Hatton T A, et al. Catalytic hydrolysis of p-nitrophenyl acetate by electrospun polyacrylamidoxime nanofibers. Polymer, 2007, 48(16): 4675–4682

    Article  CAS  Google Scholar 

  214. Zhan S, Chen D, Jiao X, et al. Long TiO2 hollow fibers with mesoporous walls: Sol-gel combined electrospun fabrication and photocatalytic properties. J Phys Chem B, 2006, 110(23): 11199–11204

    Article  PubMed  CAS  Google Scholar 

  215. Jin M, Zhang X, Emeline A V, et al. Fibrous TiO2-SiO2 nanocomposite photocatalyst. Chem Commun, 2006, (43): 4483–4485

  216. Matatov-Meytal Y, Sheintuch M. Catalytic fibers and cloths. Appl Catal A, 2002, 231(1–2): 1–16

    Article  CAS  Google Scholar 

  217. Li S-F, Chen J-P, Wu W-T. Electrospun polyacrylonitrile nanofibrous membranes for lipase immobilization. J Mol Catal B: Enzym, 2007, 47(3–4): 117–124

    Article  CAS  Google Scholar 

  218. Huang X-J, Ge D, Xu Z-K. Preparation and characterization of stable chitosan nanofibrous membrane for lipase immobilization. Europ Polym J, 2007, 43(9): 3710–3718

    Article  CAS  Google Scholar 

  219. Ye P, Xu Z-K, Wu J, et al. Nanofibrous membranes containing reactive groups: Electrospinning from poly(acrylonitrile-co-maleic acid) for lipase immobilization. Macromolecules, 2006, 39(3): 1041–1045

    Article  CAS  Google Scholar 

  220. Lee K H, Ki C S, Baek D H, et al. Application of electrospun silk fibroin nanofibers as an immobilization support of enzyme. Fibers Polym, 2005, 6(3): 181–185

    Article  CAS  Google Scholar 

  221. Jia H, Zhu G, Vugrinovich B, et al. Enzyme-carrying polymeric nanofibers prepared via electrospinning for use as unique biocatalysts. Biotech Prog, 2002, 18(5): 1027–1032

    Article  CAS  Google Scholar 

  222. Kim T G, Park T G. Surface Functionalized Electrospun Biodegradable Nanofibersfor Immobilization of Bioactive Molecules. Biotech Prog, 2006, 22(4): 1108–1113

    Article  CAS  Google Scholar 

  223. Kim B C, Nair S, Kim J, et al. Preparation of biocatalytic nanofibers with high activity and stability via enzyme aggregate coating on polymer nanofibers. Nanotechnology, 2005, 16(7): 382–388

    Article  CAS  Google Scholar 

  224. Wang Z-G, Xu Z-K, Wan L-S, et al. Nanofibrous membranes containing carbon nanotubes: electrospun for redox enzyme immobilization. Macromol Rapid Commun, 2006, 27(7): 516–521

    Article  CAS  Google Scholar 

  225. Wang Z-G, Ke B-B, Xu Z-K. Covalent immobilization of redox enzyme on electrospun nonwoven poly(acrylonitrile-co-acrylic acid) nanofiber mesh filled with carbon nanotubes: a comprehensive study. Biotech Bioeng, 2007, 97(4): 708–720

    Article  CAS  Google Scholar 

  226. Xie J, Hsieh Y-L. Ultra-high surface fibrous membranes from electrospinning of natural proteins: casein and lipase enzyme. J Mater Sci, 2003, 38(10): 2125–2133

    Article  CAS  Google Scholar 

  227. Herricks T E, Kim S-H, Kim J, et al. Direct fabrication of enzyme-carrying polymer nanofibers by electrospinning. J Mater Chem, 2005, 15(31): 3241–3245

    Article  CAS  Google Scholar 

  228. Nakane K, Hotta T, Ogihara T, et al. Synthesis of (Z)-3-hexen-1-yl acetate by lipase immobilized in polyvinyl alcohol nanofibers. J Appl Polym Sci, 2007, 106(2): 863–867

    Article  CAS  Google Scholar 

  229. Wang Y, Hsieh Y-L. Enzyme immobilization to ultra-fine cellulose fibers via amphiphilic polyethylene glycol spacers. J Polym Sci Part A: Polym Chem, 2004, 42(17): 4289–4299

    Article  CAS  Google Scholar 

  230. Huang X-J, Xu Z-K, Wan L-S, et al. Electro-spun nano fibers modified with phospholipid moieties for enzyme immobilization. Macromol Rapid Commun, 2006, 27(16): 1341–1345

    Article  CAS  Google Scholar 

  231. Wang Z-G, Wang J-Q, Xu Z-K. Immobilization of lipase from Candida rugosa on electrospun polysulfone nanofibrous membranes by adsorption. J Mol Catal B: Enzym, 2006, 42(1–2): 45–51

    Article  CAS  Google Scholar 

  232. Ursula E. Spichiger-Keller. Chemical Sensors & Biosensors for Medical and Biological Applications. Weinheim: Wily-VCH, 1998. 377–378

    Google Scholar 

  233. Wang X, Lee S-H, Drew C, et al. Electrospun nanofibrous membranes for optical sensing. Polym Mater Sci Eng, 2001, 85: 617–618

    CAS  Google Scholar 

  234. Wang X, Drew C, Lee S-H, et al. Electrospun nanofibrous membrane for highly sensitive optical sensors. Nano Lett, 2002, 2(11): 1273–1275

    Article  CAS  Google Scholar 

  235. Wang X, Lee S-H, Ku B-C, et al. Synthesis and electrospinning of a novel fluorescent polymer PMMA-PM for quenching-based optical sensing. J Macromol Sci Part A Pure Appl Chem, 2002, A39(10): 1241–1249

    Article  CAS  Google Scholar 

  236. Wang X, Kim Y-G, Drew C, et al. Electrostatic assembly of conjugated polymer thin layers on electrospun nanofibrous membranes for biosensors. Nano Lett, 2004, 4(2): 331–334

    Article  CAS  Google Scholar 

  237. Tao S, Li G, Yin J. Fluorescent nanofibrous membranes for trace detection of TNT vapor. J Mater Chem, 2007, 17(26): 2730–2736

    Article  CAS  Google Scholar 

  238. Yoon J, Chae S K, Kim J-M. Colorimetric sensors for volatile organic compounds (VOCs) based on conjugated polymer-embedded electrospun fibers. J Am Chem Soc, 2007, 129(11): 3038–3039

    Article  PubMed  CAS  Google Scholar 

  239. Ding B, Yamazaki M, Shiratori S. Electrospun fibrous polyacrylic acid membrane-based gas sensors. Sens Actuat B: Chem, 2005, B106(1): 477–483

    Article  CAS  Google Scholar 

  240. Luoh R, Hahn H T. Electrospun nanocomposite fiber mats as gas sensors. Comp Sci Tech, 2006, 66(14): 2436–2441

    Article  CAS  Google Scholar 

  241. Gouma P I. Nanostructured polymorphic oxides for advanced chemosensors. Rev Adv Mater Sci, 2003, 5(2): 147–154

    CAS  Google Scholar 

  242. Wang G, Ji Y, Huang X, et al. Fabrication and characterization of polycrystalline WO3 nanofibers and their application for ammonia sensing. J Phys Chem B, 2006, 110(47): 23777–23782

    Article  PubMed  CAS  Google Scholar 

  243. Sawicka K M, Prasad A K, Gouma P I. Metal oxide nanowires for use in chemical sensing applications. Sens Lett, 2005, 3(1): 31–35

    Article  CAS  Google Scholar 

  244. Kim I-D, Rothschild A, Lee B H, et al. Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers. Nano Lett, 2006, 6(9): 2009–2013

    Article  PubMed  CAS  Google Scholar 

  245. Yang M, Xie T F, Peng L, et al. Fabrication and photoelectric oxygen sensing characteristics of electrospun Co doped ZnO nanofibres. Appl Phys A Mater Sci Proc, 2007, 89(2): 427–430

    Article  CAS  Google Scholar 

  246. Aussawasathien D, Dong J H, Dai L. Electrospun polymer nanofiber sensors. Synth Metals, 2005, 154(1–3): 37–40

    Article  CAS  Google Scholar 

  247. Bishop A, Gouma P. Leuco-emeraldine based polyaniline—poly-vinyl-pyrrolidone electrospun composites and bio-composites: A preliminary study of sensing behavior. Rev Adv Mater Sci, 2005, 10(3): 209–214

    CAS  Google Scholar 

  248. Bishop-Haynes A, Gouma P. Electrospun polyaniline composites for NO2 detection. Mater Manufact Proc, 2007, 22(6): 764–767

    Article  CAS  Google Scholar 

  249. Pinto N J, Gonzalez R, Johnson A T, et al. Electrospun hybrid organic/inorganic semiconductor Schottky nanodiode. Appl Phys Lett, 2006, 89(3): 033505

    Google Scholar 

  250. Kessick R, Tepper G. Electrospun polymer composite fiber arrays for the detection and identification of volatile organic compounds. Sens Actuat B: Chem, 2006, B117(1): 205–210

    Article  CAS  Google Scholar 

  251. Laxminarayana K, Jalili N. Functional nanotube-based textiles: Pathway to next generation fabrics with enhanced sensing capabilities. Text Res J, 2005, 75(9): 670–680

    Article  CAS  Google Scholar 

  252. Sawicka K, Gouma P, Simon S. Electrospun biocomposite nanofibers for urea biosensing. Sens Actuat B: Chem, 2005, B108(1–2): 585–588

    Article  CAS  Google Scholar 

  253. Patel A C, Li S, Yuan J-M, et al. In situ encapsulation of horseradish peroxidase in electrospun porous silica fibers for potential biosensor applications. Nano Lett, 2006, 6(5): 1042–1046

    Article  PubMed  CAS  Google Scholar 

  254. Ren G, Xu X, Liu Q, et al. Electrospun poly(vinyl alcohol)/glucose oxidase biocomposite membranes for biosensor applications. React Funct Polym, 2006, 66(12): 1559–1564

    Article  CAS  Google Scholar 

  255. Manesh K M, Santhosh P, Gopalan A, et al. Electrospun poly(vinylidene fluoride)/poly(aminophenylboronic acid) composite nanofibrous membrane as a novel glucose sensor. Anal Biochem, 2007, 360(2): 189–195

    Article  PubMed  CAS  Google Scholar 

  256. Arora P, Zhang Z. Battery Separators. Chem Rev, 2004, 104(10): 4419–4462

    Article  PubMed  CAS  Google Scholar 

  257. Choi S W, Jo S M, Lee W S, et al. An electrospun poly(vinylidene fluoride) nanofibrous membrane and its battery applications. Adv Mater, 2003, 15(23): 2027–2032

    Article  CAS  Google Scholar 

  258. Kim J R, Choi S W, Jo S M, et al. Electrospun PVdF-based fibrous polymer electrolytes for lithium ion polymer batteries. Electrochim Acta, 2004, 50(1): 69–75

    Article  CAS  Google Scholar 

  259. Choi S-S, Lee Y S, Joo C W, et al. Electrospun PVDF nanofiber web as polymer electrolyte or separator. Electrochim Acta, 2004, 50(2–3): 339–343

    Article  CAS  Google Scholar 

  260. Gao K, Hu X, Dai C, et al. Crystal structures of electrospun PVDF membranes and its separator application for rechargeable lithium metal cells. Mater Sci Eng B: Solid-State Mater Adv Tech, 2006, 131(1–3): 100–105

    Article  CAS  Google Scholar 

  261. Kim J R, Choi S W, Jo S M, et al. Characterization and properties of P(VdF-HFP)-based fibrous polymer electrolyte membrane prepared by electrospinning. J Electrochem Soc, 2005, 152(2): A295–A300

    Article  CAS  Google Scholar 

  262. Li X, Cheruvally G, Kim J-K, et al. Polymer electrolytes based on an electrospun poly(vinylidene fluoride-co-hexafluoropropylene) membrane for lithium batteries. J Power Sources, 2007, 167(2): 491–498

    Article  CAS  Google Scholar 

  263. Kim J-K, Cheruvally G, Choi J-W, et al. Rechargeable organic radical battery with electrospun, fibrous membrane-based polymer electrolyte. J Electrochem Soc, 2007, 154(9): A839–A843

    Article  CAS  Google Scholar 

  264. Choi S W, Kim J R, Jo S M, et al. Electrochemical and spectroscopic properties of electrospun PAN-based fibrous polymer electrolytes. J Electrochem Soc, 2005, 152(5): A989–A995

    Article  CAS  Google Scholar 

  265. Ahn Y C, Park S K, G.T.K, et al. Development of high efficiency nanofilters made of nanofibers. Curr Appl Phys, 2006, 6(6): 1030–1035

    Article  Google Scholar 

  266. Fan Q, Whittingham M S. Electrospun manganese oxide nanofibers as anodes for lithium-ion batteries. Electrochem Solid-State Lett, 2007, 10(3): A48–A51

    Article  CAS  Google Scholar 

  267. Gu Y, Chen D, Jiao X, et al. LiCoO2-MgO coaxial fibers: Co-electrospun fabrication, characterization and electrochemical properties. J Mater Chem, 2007, 17(18): 1769–1776

    Article  CAS  Google Scholar 

  268. Lu H-W, Zeng W, Li Y-S, et al. Fabrication and electrochemical properties of three-dimensional net architectures of anatase TiO2 and spinel Li4Ti5O12 nanofibers. J Power Sources, 2007, 164(2): 874–879

    Article  CAS  Google Scholar 

  269. Song M Y, Kim D K, Ihn K J, et al. Electrospun TiO2 electrodes for dye-sensitized solar cells. Nanotechnology, 2004, 15(12): 1861–1865

    Article  CAS  Google Scholar 

  270. Song M Y, Kim D K, Jo S M, et al. Enhancement of the photocurrent generation in dye-sensitized solar cell based on electrospun TiO2 electrode by surface treatment. Synth Metals, 2005, 155(3): 635–638

    Article  CAS  Google Scholar 

  271. Jo S M, Song M Y, Ahn Y R, et al. Nanofibril formation of electrospun TiO2 fibers and its application to dye-sensitized solar cells. J Macromol Sci Part A Pure Appl Chem, 2005, A42(11): 1529–1540

    CAS  Google Scholar 

  272. Song M Y, Kim D K, Ihn K J, et al. New application of electrospun TiO2 electrode to solid-state dye-sensitized solar cells. Synth Metals, 2005, 153(1–3): 77–80

    Article  CAS  Google Scholar 

  273. Dillon A C, Jones K M, Bekkedahl T A, et al. Storage of hydrogen in single-walled carbon nanotubes. Nature, 1997, 386(6623): 377–379

    Article  CAS  Google Scholar 

  274. Kim D-K, Park S H, Kim B C, et al. Electrospun polyacrylonitrile-based carbon nanofibers and their hydrogen storage. Macromol Res, 2005, 13(6): 521–528

    Article  CAS  Google Scholar 

  275. Hong S E, Kim D-K, Jo S M, et al. Graphite nanofibers prepared from catalytic graphitization of electrospun poly(vinylidene fluoride) nanofibers and their hydrogen storage capacity. Catal Today, 2007, 120(3–4): 413–419

    Article  CAS  Google Scholar 

  276. Bergshoef M M, Vancso G J. Transparent nanocomposites with ultrathin, electrospun nylon-4,6 fiber reinforcement. Adv Mater, 1999, 11(16): 1362–1365

    Article  CAS  Google Scholar 

  277. Kim J-S, Eneker D H. Mechanical properties of composites using ultrafine electrospun fibers. Polym Comp, 1999, 20(1): 124–131

    Article  CAS  Google Scholar 

  278. Fong H. Electrospun nylon 6 nanofiber reinforced BIS-GMA/TEGDMA dental restorative composite resins. Polymer, 2004, 45(7): 2427–2432

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong Lin.

About this article

Cite this article

Fang, J., Niu, H., Lin, T. et al. Applications of electrospun nanofibers. Chin. Sci. Bull. 53, 2265–2286 (2008). https://doi.org/10.1007/s11434-008-0319-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0319-0

Keywords

Navigation