Skip to main content
Log in

Implementation of the Earth-based planetary radio occultation inversion technique

  • Research Paper
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

The planetary radio occultation technique is one of the earliest suggested and achieved methods to detect the planetary atmosphere, and has been conducted by almost every deep space planetary probe. The principles, modules, inversion results and primary analysis of the SHAO Planetary Occultation observation Processing system (SPOPs) are presented in this paper. Utilizing open-loop and closed-loop Doppler residual data of the Mars Express radio occultation experiment provided by ESA PSA and NASA PDS, the temperature, pressure, molecular number density profiles of Martian atmosphere and electron density profiles of the ionosphere are successfully retrieved, and the results are validated by the released radio science level 04 products of the ESA MaRS group. This system can also process the atmosphere radio occultation observations of other planets and theirs natural satellites. The implementation of the planetary radio occultation technique is of significance to China’s YH-1 Mars exploration project, as well as for future planetary exploration missions from China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asmar S W, Renzetti N A. The Deep Space Network as an Instrument for Radio Science Research. Pasadena: JPL Publication, 1993. 80–93

    Google Scholar 

  2. Kliore A J, Hamilton T W, Cain D L. Determination of Some Physical Properties of the Atmosphere of Mars From Changes in the Doppler Signal of a Spacecraft on an Earth Occultation Trajectory. Pasadena: JPL Publication, 1964. 32–674

    Google Scholar 

  3. Kliore A J, Cain D L, Levy G S, et al. Occultation experiment: results of the first direct measurement of Mars’ atmosphere and ionosphere. Science, 1965, 149: 1243–1248

    Article  ADS  Google Scholar 

  4. Fjeldbo G, Eshleman V R. The atmosphere of Mars analyzed by integral inversion of the Mariner IV occultation data. Planet. Space Sci, 1968, 16: 1035–1059

    Article  ADS  Google Scholar 

  5. Fjeldbo G, Kliore A J, Eshleman V R. The neutral atmosphere of Venus as studied with the Mariner V radio occultation experiments. Astron J, 1971, 76: 123–140

    Article  ADS  Google Scholar 

  6. Kliore A J, Levy G S, Cain D L, et al. Atmosphere and ionosphere of Venus from the Mariner V S-band radio occultation measurement. Science, 1967, 158: 1683–1689

    Article  ADS  Google Scholar 

  7. Kliore A J, Fjeldbo G, Seidel B L, et al. Mariners 6 and 7: Radio occultation measurements of the atmosphere of Mars. Science, 1969, 166: 1393–1397

    Article  ADS  Google Scholar 

  8. Kliore A J, Cain D L, Fjeldbo G, et al. The atmosphere of Mars from Mariner 9 radio occultation measurements. Icarus, 1972, 17: 484–516

    Article  ADS  Google Scholar 

  9. Tyler G L, Almino G B, Hinson D P, et al. Radio science investigations with Mars observer. J Geophys Res, 1992, 97: 7759–7779

    Article  ADS  Google Scholar 

  10. Cahoy K L, Hinson D P, Tyler G L. Radio science measurements of atmospheric refractivity with Mars global surveyor. J Geophys Res, 2006, 111: E05003, doi:10.1029/2005JE002634

    Article  Google Scholar 

  11. Hinson D P, Wilson R J. Temperature inversions, thermal tides, and water ice clouds in the Martian tropics. J Geophys Res, 2004, 109: E01002, doi:10.1029/2003JE002129

    Article  Google Scholar 

  12. Pätzold M, Tellmann S, Haeusler B, et al. A Sporadic third layer in the ionosphere of Mars. Science, 2005, 310: 837–839

    Article  ADS  Google Scholar 

  13. Howard H T, Tyler G L, Esposito P B, et al. Mercury: Results on mass, radius, ionosphere from Mariner 10 dual-frequency radio signals. Science, 1974a, 185:179–180

    Article  ADS  Google Scholar 

  14. Fjeldbo G, Kliore A, Sweetnam D, et al. The occultation of Mariner 10 by Mercury. Icarus, 1976, 29: 439–444

    Article  ADS  Google Scholar 

  15. Howard H T, Tyler G L, Fjeldbo G, et al. Venus: Mass, gravity field, atmosphere and ionosphere as measured by the Mariner 10 dual-frequency radio system. Science, 1974b, 183: 1297–1301

    Article  ADS  Google Scholar 

  16. Kliore A J, Fjeldbo G, Seidel B L, et al. The atmosphere of Jupiter from Pioneer 11 s-band occultation experiment: Preliminary results. Science, 1975, 188: 474–476

    Article  ADS  Google Scholar 

  17. Kliore A J, Woo R, Armstrong J W, et al. The polar ionosphere of venus near the terminator from early pioneer venus orbiter radio occultation. Science, 1979a, 203: 765–768

    Article  ADS  Google Scholar 

  18. Kliore A J, Patel I R, Nagy A F, et al. Initial observations of the nightside ionosphere of venus form pioneer venus orbiter radio occultations. Science, 1979b, 205: 99–102

    Article  ADS  Google Scholar 

  19. Lindal G F. The atmosphere of Neptune: An analysis of radio occultation data acquired with Voyager 2. Astron J, 1992, 103: 967–982

    Article  ADS  Google Scholar 

  20. Tyler G L, Sweetnam D N, Anderson J D, et al. Voyager radio science observations of Neptune and Triton. Science, 1989, 246: 1466–1473

    Article  ADS  Google Scholar 

  21. Hinson D P, Twicken J D, Karayel E T. Jupiter’s ionosphere: New results from the first Voyager 2 radio occultation measurements. J Geophys Res, 1998, 103: 9505–9520

    Article  ADS  Google Scholar 

  22. Tyler G L. Radio propagation experiments in the outer solar system with Voyager. Proc IEEE, 1987, 75: 1404–1431

    Article  ADS  Google Scholar 

  23. Hinson D P, Flasar F M, Kliore A J, et al. Jupiter’s ionosphere: Results from the first Galileo radio occultation experiment. Geophys Res Lett, 1997, 24: 2107–2110

    Article  ADS  Google Scholar 

  24. Bird M K, Asmar S W, Edenhofer P, et al. The structure of Jupiter’s Io plasma torus inferred from Ulysses radio occultation observations. Planet Space Sci, 1993, 41: 999–1010

    Article  ADS  Google Scholar 

  25. Bougher S W, Engel S, Hinson D P, et al. MGS Radio Science electron density profiles: Interannual variability and implications. J Geophys Res, 2004, 109: E03010, doi:10.1029/2003JE002154

    Article  Google Scholar 

  26. Hinson D P, Paetzold M, Wilson R J, et al. Radio occultation measurements of transient eddies in the northern hemisphere of Mars. J Geophys Res, 2006, 111: E05002, doi: 10.1029/2005JE002612

    Article  Google Scholar 

  27. Hinson D P. Radio occultation measurements and MGCM simulations of Kelvin waves on Mars. ICARUS, 2008, 193: 125–138

    Article  ADS  Google Scholar 

  28. Krymskii A M, Breus T K, Ness N F, et al. Effect of crustal magnetic fields on the near terminator ionosphere at Mars: Comparison of in situ magnetic field measurements with the data of radio science experiments on board Mars global surveyor. J Geophys Res, 2003, 108: 1431–1443, doi: 10.1029/2002JA009662

    Article  Google Scholar 

  29. Fjeldbo G, Eshleman V R, Garriott O K, et al. The two-frequency bistatic radio-occulation method for the study of planetary ionospheres. J Geophys Res, 1965, 70: 3701–3709

    Article  ADS  Google Scholar 

  30. Han T T, Mao X F, Zahng S J, et al. The time and coordinate systems of Earth-based Mars atmosphere occultation (in chinese). Ann Shanghai Astron Observatory, 2009, 30: 22–32

    Google Scholar 

  31. Zhang S J, Ping J S, Hong Z J, et al. Detection of Martian atmosphere and ionosphere using spacecraft-earth radio occultation technique (in chinese). Physics, 2009, 38: 467–473

    Google Scholar 

  32. Allen C W. Astrophysical Quantities. 4th ed. London: The Athlone Press, 1999. 13–22

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SuJun Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, S., Ping, J., Han, T. et al. Implementation of the Earth-based planetary radio occultation inversion technique. Sci. China Phys. Mech. Astron. 54, 1359–1366 (2011). https://doi.org/10.1007/s11433-011-4247-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-011-4247-7

Keywords

Navigation