Skip to main content
Log in

Spatio-temporal patterns of forest carbon dioxide exchange based on global eddy covariance measurements

  • Published:
Science in China Series D: Earth Sciences Aims and scope Submit manuscript

Abstract

Spatio-temporal patterns and driving mechanisms of forest carbon dioxide (CO2) exchange are the key issues on terrestrial ecosystem carbon cycles, which are the basis for developing and validating ecosystem carbon cycle models, assessing and predicting the role of forests in global carbon balance. Eddy covariance (EC) technique, an important method for measuring energy and material exchanges between terrestrial ecosystems and the atmosphere, has made a great contribution to understanding CO2 exchanges in the biosphere during the past decade. Here, we synthesized published EC flux measurements at various forest sites in the global network of eddy flux tower sites (FLUXNET) and regional flux networks. Our objective was to explore spatio-temporal patterns and driving factors on forest carbon fluxes, i.e. net ecosystem productivity (NEP), gross primary productivity (GPP) and total ecosystem respiration (TER). Globally, forest NEP exhibited a significant latitudinal pattern jointly controlled by GPP and TER. The NEP decreased in an order of warm temperate forest > cold temperate and tropical rain forests > boreal and subalpine forests. Mean annual temperature (MAT) made a greater contribution to forest carbon fluxes than sum of annual precipitation (SAP). As MAT increased, the GPP increased linearly, whereas the TER increased exponentially, resulting in the NEP decreasing beyond an MAT threshold of 20°C. The GPP, TER and NEP varied substantially when the SAP was less than 1500 mm, but tended to increase with increasing SAP. Temporal dynamics in forest carbon fluxes and determinants depended upon time scales. NEP showed a significant interannual variability mainly driven by climate fluctuations and different responses of the GPP and TER to environmental forcing. In a longer term, forest carbon fluxes had a significant age effect. The ecosystem was a net carbon source right after clear-cutting, gradually switched to a net carbon sink when the relative stand age (i.e. ratio of actual stand age to the stand rotation age) approached 0.3, and maximized carbon sequestration capacity at pre-mature or mature stand stages. This temporal pattern of NEP was correlated with stand leaf area index and associated GPP. This study highlights the significance of spatio-temporal dynamics in the CO2 exchange in forest carbon cycling studies. It is also suggested that in addition to forest biomes, interannual variations and stand age effects of forest carbon fluxes should be considered in the global carbon balance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schimel D S. Terrestrial ecosystems and the carbon-cycle. Global Change Biol, 1995(1), 1: 77–91

    Article  Google Scholar 

  2. Canadell J G, Mooney H A, Baldocchi D D, et al. Carbon metabolism of the terrestrial biosphere: a multitechnique approach for improved understanding. Ecosystems, 2000, (2): 115–130

  3. Bousquet P, Peylin P, Ciais P, et al. Regional changes in carbon dioxide fluxes of land and oceans since 1980. Science, 2000, 290: 1342–1346

    Article  Google Scholar 

  4. Schimel D S, House J I, Hibbard K A, et al. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature, 2001, 414: 169–172

    Article  Google Scholar 

  5. Rayner P J, Scholze M, Knorr W, et al. Two decades of terrestrial carbon fluxes from a carbon cycle data assimilation system (CCDAS). Global Biogeochem Cycles, 2005, 19(2): 1–20

    Article  Google Scholar 

  6. IGBP Terrestrial carbon working group. The terrestrial carbon cycle: implications for the Kyoto protocol. Science, 1998, 280: 1393–1394

    Article  Google Scholar 

  7. Global Carbon Project. Science Framework and Implementation. Earth System Science Partnership (IGBP, IHDP, WCRP, DIVERSITAS) Report No.1; Global Carbon Project Report No. 1, Canberra, 2003

  8. Malhi Y, Baldocchi D D, Jarvis P G. The carbon balance of tropical, temperate and boreal forests. Plant, Cell Environ, 1999, 22(6): 715–740

    Article  Google Scholar 

  9. Waring R H, Running S W. Forest Ecosystems: Analysis at Multiple Scales. San Diego: Academic Press, 1998

    Google Scholar 

  10. Gower S T. Patterns and mechanisms of the forest carbon cycle. Annu Rev Environ Resour, 2003, 28: 169–204

    Article  Google Scholar 

  11. Wofsy S C, Goulden M L, Munger J W, et al. Net exchange of CO2 in a mid-latitude forest. Science, 1993, 260: 1314–1317

    Article  Google Scholar 

  12. Baldocchi D, Valentini R, Running S R, et al. Strategies for measuring and modeling CO2 and water vapor fluxes over terrestrial ecosystems. Global Change Biol, 1996, 2(3): 159–168

    Article  Google Scholar 

  13. Aubinet M, Grelle A, Ibrom A, et al. Estimates of the annual net carbon and water vapor exchange of forests: The EUROFLUX methodology. Adv Ecol Res, 2000, 30: 113–175

    Article  Google Scholar 

  14. Baldocchi D, Falge E, Gu L, et al. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. B Am Meteorol Soc, 2001, 82(11): 2415–2434

    Article  Google Scholar 

  15. Valentini R, Matteucci G, Dolman A J, et al. Respiration as the main determinant of carbon balance in European forests. Nature, 2000, 404: 861–865

    Article  Google Scholar 

  16. Law B E, Falge E, Gu L, et al. Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agric For Meteorol, 2002, 113(1–4): 97–120

    Article  Google Scholar 

  17. Arain M A, Black T A, Barr A G, et al. Effects of seasonal and interannual climate variability on net ecosystem productivity of boreal deciduous and conifer forests. Can J For Res, 2002, 32(5): 878–891

    Article  Google Scholar 

  18. Falge E, Baldoochi D, Tenhunen J, et al. Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agric For Meteorol, 2002, 113(1–4): 53–74

    Article  Google Scholar 

  19. Dunn A L, Barford C C, Wofsy S C, et al. A long-term record of carbon exchange in a boreal black spruce forest: means, responses to interannual variability, and decadal trends. Global Change Biol, 2007, 13(3): 577–590

    Article  Google Scholar 

  20. Papale D, Valentini R. A new assessment of European forests carbon exchanges by eddy fluxes and artificial neural network spatialization. Global Change Biol, 2003, 9(4): 525–535

    Article  Google Scholar 

  21. Hanan N P, Burba G, Verma S, et al. Inversion of net ecosystem CO2 flux measurements for estimation of canopy PAR absorption. Global Change Biol, 2002, 8(6): 563–574

    Article  Google Scholar 

  22. Hanson P J, Amthor J S, Wullschleger S D, et al. Oak forest carbon and water simulations: Monthly intercomparisons and evaluations against independent data. Ecol Monogr, 2004, 74(3): 443–489

    Article  Google Scholar 

  23. Owen K E, Tenhunen J, Reichstein M, et al. Linking flux network measurements to continental scale simulations: Ecosystem carbon dioxide exchange capacity under non-water-stressed conditions, Global Change Biol, 2007, 13(4): 734–760

    Google Scholar 

  24. Friend A D, Arneth A, Kiang N Y, et al. FLUXNET and modelling the global carbon cycle. Global Change Biol, 2007, 13(3): 610–633

    Article  Google Scholar 

  25. Janssens I A, Lankreijer H, Mattaucci G, et al. Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Global Change Biol, 2001, 7(3): 269–278

    Article  Google Scholar 

  26. Van Dijk A I J M, Dolman A J. Estimates of CO2 uptake and release among European forests based on eddy covariance data. Global Change Biol, 2004, 10(9): 1445–1459

    Article  Google Scholar 

  27. Barford C C, Wofsy S C, Goulden M L, et al. Factors controlling long-and short-term sequestration of atmospheric CO2 in a mid-latitude forest. Science, 2001, 294: 1688–1691

    Article  Google Scholar 

  28. Saigusa N, Yamamoto S, Murayama S, et al. Inter-annual variability of carbon fluxe components in an AsiaFlux forest site estimated by long-term flux measurements. Agric For Meteorol, 2005, 134(1–4): 4–16

    Article  Google Scholar 

  29. Schwalm C R, Black T A, Morgenstern K, et al. A method for deriving net primary productivity and component respiratory fluxes from tower-based eddy covariance data: a case study using a 17-year data record from a Douglas-fir chronosequence. Global Change Biol, 2007, 13(2): 370–385

    Article  Google Scholar 

  30. Grant RF, Barr AG, Black TA, et al. Net ecosystem productivity of boreal jack pine stands regenerating from learcutting under current and future climates. Global Change Biol, 2007, 13(7): 1423–1440

    Article  Google Scholar 

  31. Reichstein M, Falge E, Baldocchi D, et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biol, 2005, 11(9): 1424–1439

    Article  Google Scholar 

  32. Falge E, Baldocchi D, Olson R, et al. Gap filling strategies for defensible annual sums of net ecosystem exchange, Agric For Meteorol, 2001, 107(1): 43–69

    Article  Google Scholar 

  33. Papale D, Reichstein M, Aubinet M, et al. Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences, 2006, 3(4): 571 583

    Google Scholar 

  34. Massman J C, Lee X. Eddy covariance corrections and uncertainties in long-term studies of carbon and energy exchange. Agric For Meteorol, 2002, 113(1–4): 121–144

    Article  Google Scholar 

  35. Baldocchi D D. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biol, 2003, 9(4): 479–492

    Article  Google Scholar 

  36. Aubinet M, Berbigier P, Bernhofer C H, et al. Comparing CO2 storage and advection conditions at night at different carboeuroflux sites. Bound-lay Meteorol, 2005, 116(1): 63–94

    Article  Google Scholar 

  37. Barr A G, Black T A, Hogg E H, et al. Climatic controls on the carbon and water balances of a boreal aspen forest, 1994–2003. Global Change Biol, 2007, 13(3): 561–576

    Article  Google Scholar 

  38. Grant R F, Black T A, Gaumont-Guay D, et al. Net ecosystem productivity of boreal aspen forests under drought and climate change: Mathematical modelling with Ecosys. Agric For Meteorol, 2006, 140(1–4): 152–170

    Article  Google Scholar 

  39. Kljun N, Black T A, Griffis T J, et al. Response of net ecosystem productivity of three boreal forest stands to drought. Ecosystems, 2006, 9(7): 1128–1144

    Article  Google Scholar 

  40. Bergeron O, Margolis H A, Black T A, et al. Comparison of carbon dioxide fluxes over three boreal black spruce in Canada. Global Change Biol, 2007, 13(1): 89–107

    Article  Google Scholar 

  41. Lloyd J, Shibistova O, Zolotoukhine D, et al. Seasonal and annual variations in the photosynthetic productivity and carbon balance of a central Siberian pine forest. Tellus, 2002, 54B(5): 590–610

    Google Scholar 

  42. Wirth C, Czimczik C I, Schulze E D. Beyond annual fluxes: carbon flux at different temporal scales in fire-prone Siberian Scots pine forests. Tellus, 2002, 54B(5): 611–630

    Google Scholar 

  43. Kolari P, Pumpanen J, Rannik Ü, et al. Carbon balance of different aged Scots pine forests in Southern Finland. Global Change Biol, 2004, 10(7): 1106–1119

    Article  Google Scholar 

  44. Zha T, Kellomäki S, Wang K, et al. Carbon sequestration and ecosystem respiration for 4 years in a Scots pine forest. Global Change Biol, 2004, 10(9): 1492–1503

    Article  Google Scholar 

  45. Ueyama M, Harazono Y, Ohtaki E. Controlling factors on the interannual CO2 fluxe at a subarctic black spruce forest in interior Alaska. Tellus, 2006, 58B(5): 491–501

    Google Scholar 

  46. Arain M A, Restrepo-Coupe N. Net ecosystem production in a temperate pine plantation in southeastern Canada. Agric For Meteorol, 2005, 128(3–4): 223–241

    Article  Google Scholar 

  47. Zeller K F, Nikolov N T. Quantifying simultaneous fluxes of ozone, carbon dioxide and water vapour above a subalpine forest ecosystems. Environ Pollut, 2000, 107(1): 1–20

    Article  Google Scholar 

  48. Stoy P C, Katul G G, Siqueira M B S, et al. An evaluation of models for partitioning eddy covariance-measured net ecosystem exchange into photosynthesis and respiration. Agric For Meteorol, 2006, 141(1): 2–18

    Article  Google Scholar 

  49. Kowalski A S, Loustau D, Berbigier P, et al. Paired comparisons of carbon exchange between undisturbed and regenerating stands in four managed forests in Europe. Global Change Biol. 2004, 10(10):1707–1723

    Article  Google Scholar 

  50. Nakai Y, Kitamura K, Suzuki S, et al. Year-long carbon dioxide exchange above a broadleaf deciduous forest in Sapporo, Northern Japan. Tellus, 2003, 55B(2): 305–312

    Google Scholar 

  51. Cook B D, Davis K J, Wang W, et al. Carbon exchange and venting anomalies in an upland deciduous forest in northern Wisconsin, USA. Agric For Meteorol, 2004, 126(3–4): 271–295

    Article  Google Scholar 

  52. Desai A R, Bolstad P V, Cook B D, et al. Comparing net ecosystem exchange of carbon dioxide between an old-growth and mature forest in the upper Midwest, USA. Agric For Meteorol, 2005, 128(1–2): 33–55

    Article  Google Scholar 

  53. Granier A, Ceschia E, Damesin C, et al. The carbon balance of a young Beech forest. Funct Ecol, 2000, 14(3): 312–325

    Article  Google Scholar 

  54. Hirata R, Hirano T, Saigusa N, et al. CO2 and water vapor exchange of a larch forest in northern Japan. Agric For Meteorol, 2007, 147(3–4): 110–124

    Article  Google Scholar 

  55. Lai C-T, Katul G., Butnor J, et al. Modelling night-time ecosystem respiration by a constrained source optimization method. Global Change Biol, 2002, 8(2): 124–141

    Article  Google Scholar 

  56. Thornton P E, Law B E, Ellsworth D S, et al. Modeling and measuring the effects of disturbance history and climate on carbon and water fluxes in evergreen needleleaf forests. Agric For Meteorol, 2002, 113(1–4): 185–222

    Article  Google Scholar 

  57. Arneth A, Kelliher F M, Mcseveny T M, et al. Net ecosystem productivity, net primary productivity and ecosystem carbon sequestration in a Pinus radiata plantation subject to soil water deficit. Tree Physiol, 1998, 18(12): 785–793

    Google Scholar 

  58. Law B E, Waring R H, Anthoni P M, et al. Measurements of gross and net ecosystem productivity and water vapour exchange of a Pinus ponderosa ecosystem, and an evaluation of two generalized models. Global Change Biol, 2000, 6(2): 155–168

    Article  Google Scholar 

  59. Kowalski S, M Sartore, Burlett R, et al. The annual carbon fluxe of a French pine forest (Pinus pinaster) following harvest. Global Change Biol, 2003, 9(7): 1051–1065

    Article  Google Scholar 

  60. Berbigier P, Bonnefond J-M, Mellmann P. CO2 and water vapour fluxes for 2 years above Euroflux forest site. Agric For Meteorol, 2001, 108(3): 183–197

    Article  Google Scholar 

  61. Grunwald T and Bernhofer C. A decade of carbon, water and energy flux measurements of an old spruce forest at the Anchor Station Tharandt. Tellus, 2007, 59B(3): 387–396

    Google Scholar 

  62. Dolman A J, Moors E J and Elbers J A. The carbon uptake of a mid latitude pine forest growing on sandy soil. Agric For Meteorol, 2002, 111(3): 157–170

    Article  Google Scholar 

  63. Yu G, Fu Y, Sun X, et al. Recent progress and future directions of ChinaFLUX. Sci China Ser D-Earth Sci, 2006, 49(Suppl II): 1–23

    Google Scholar 

  64. Richardson A D, Hollinger D Y, Aber J D, et al. Environment variation is directly responsible for short-but not long-term variation in forest-atmosphere carbon exchange. Global Change Biol, 2007, 13(4): 788–803

    Google Scholar 

  65. Clark K L, Gholz H L, Castro M S. Carbon dynamics along a chronosequence of slash pine plantations in north florida. Ecol Appl, 2004, 14(4): 1154–1171

    Article  Google Scholar 

  66. Kosugi Y, Tanaka H, Takanashi S, et al. Three years of carbon and energy fluxes from Japanese evergreen broad-leaved forest. Agric For Meteorol, 2005, 132(3–4): 329–343

    Article  Google Scholar 

  67. Loescher H W, Oberbauer S F, Gholz H L, et al. Environmental controls on net ecosystem-level carbon exchange and productivity in a Central American tropical wet forest. Global Change Biol, 2003, 9(3): 396–412

    Article  Google Scholar 

  68. Malhi Y, Nobre A D, Grace J, et al. Carbon dioxide transfer over a Central Amazonian rain forest. J Geophys Res, 1998, 103(D24): 31593–31612

    Article  Google Scholar 

  69. Grace J, Mahli Y, Lloyd J, et al. The use of eddy covariance to infer net carbon dioxide uptake of Brazilian rain forest. Global Change Biol, 1996, 2(3): 209–217

    Article  Google Scholar 

  70. Foley J A, Prentice I C, Ramankutty N. An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochem Cycles, 1996, 10(4): 603–628

    Article  Google Scholar 

  71. Falge E, Tenhunen J, Baldoochi D, et al. Phase and amplitude of ecosystem carbon release and uptake potentials as derived from FLUXNET measurements. Agric For Meteorol, 2002, 113(1–4): 75–95

    Article  Google Scholar 

  72. Chapin F S, Woodwell G M, Randerson J T, et al. Reconciling Carbon-cycle Concepts, Terminology, and Methods. Ecosystems, 1998, 9(7): 1041–1050

    Article  Google Scholar 

  73. Luyssaert S, Inglima I, Jung M. CO2 balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biol, 2007, 13(12): 2509–2537

    Article  Google Scholar 

  74. Reichstein M, Ciais P, Papale D, et al. Reduction of ecosystem productivity and respiration during the European summer (2003) climate anomaly: A joint flux tower, remote sensing and modelling analysis. Global Change Biol, 2006, 13(3): 634–651

    Article  Google Scholar 

  75. Ciais P, Reichstein M, Viovy N, et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 2005, 437: 529–533

    Article  Google Scholar 

  76. Sun X, Wen X, Yu G, et al. Seasonal drought effects on carbon sequestration of a mid-subtropical planted forest of southeastern China. Sci China Ser D-Earth Sci, 2006, 49(Suppl II): 110–118

    Article  Google Scholar 

  77. Reichstein M, Tenhunen J D, Roupsard O, et al. Ecosystem respiration in two Mediterranean evergreen Holm Oak forests: Drought effects and decomposition dynamics. Funct Ecol, 2002, 16(1): 27–39

    Article  Google Scholar 

  78. Reichstein M, Tenhunen J D, Roupsard O, et al. Severe drought effects on ecosystem CO2 and H2O fluxes at Mediterranean evergreen sites: Revision of current hypothesis? Global Change Biol, 2002, 8(10): 999–1017

    Article  Google Scholar 

  79. Wen X-F, Yu G-R, Sun X-M, et al. Soil moisture effect on the temperature dependence of ecosystem respiration in a subtropical Pinus plantation of southeastern China. Agric For Meteorol, 2006, 137(3–4): 166–175

    Article  Google Scholar 

  80. Goulden M L, Wofsy S C, Harden J W, et al. Sensitivity of boreal forest carbon balance to soil thaw. Science, 1998, 279: 214–217

    Article  Google Scholar 

  81. Lagergren F, Lindroth A, Dellwik E, et al. Biophysical controls on CO2 fluxes of three Northern forests based on long-term eddy covariance data. Tellus, 2008, 20B: 143–152

    Google Scholar 

  82. Goulden M L, Munger J W, Fan S M, et al. Exchange of carbon dioxide by a deciduous forest: response to interannual climate variability. Science, 1996, 271: 1576–1578

    Article  Google Scholar 

  83. Barr A G, Griffis T J, Black T A, et al. Comparing the carbon fluxes of boreal and temperate deciduous forest stands. Canadian J Forest Res, 2002, 32(5): 813–822

    Article  Google Scholar 

  84. White M A, Nemani R R. Canopy duration has little influence on annual carbon storage in the deciduous broadleaf forest. Global Change Biol, 2003, 9(7): 967–972

    Article  Google Scholar 

  85. Welp L R, Randerson J T, Liu H P. The sensitivity of carbon fluxes to spring warming and summer drought depends on plant functional type in boreal forest ecosystems. Agric For Meteorol, 2007, 147(3–4): 172–185

    Article  Google Scholar 

  86. Piao S, Ciais P, Friedlingstein P, et al. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature, 2008, 451: 49–53

    Article  Google Scholar 

  87. Luyssaert S, Janssens I A, Sulkava M. Photosynthesis drives anomalies in net carbon-exchange of pine forests at different latitudes. Global Change Biol, 2007, 13(10): 2110–2127

    Article  Google Scholar 

  88. Siqueira M B, Katul G G, Sampson D A, et al. Multiscale model intercomparisons of CO2 and H2O exchange rates in a maturing southeastern US pine forest. Global Change Biol, 2006, 12(7): 1189–1207

    Article  Google Scholar 

  89. Hui D, Luo Y, Katul G. Partitioning interannual variability in net ecosystem exchange between climatic variability and functional change. Tree Physiol, 2003, 23(7): 433–442

    Google Scholar 

  90. Pregitzer K S, Euskirchen E S. Carbon cycling and storage in world forests: biome patterns related to forest age. Global Change Biol, 2004, 10(12): 2052–2077

    Article  Google Scholar 

  91. Law B E, Sun O J, Campbell J, et al. Changes in carbon storage and fluxes in a chronosequence of ponderosa pine. Global Change Biol, 2003, 9(4): 510–524

    Article  Google Scholar 

  92. Bond-Lamberty B, Wang C K, Gower S T. Net primary production and net ecosystem production of a boreal black spruce wildfire chronosequence. Global Change Biol, 2004, 10(4): 473–487

    Article  Google Scholar 

  93. Chen J, Falk M, Euskirchen E, et al. Biophysical controls of C flows in three successional Douglas-fir stands based on eddy-covariance measurements. Tree Physiol, 2002, 22(2/3): 169–177

    Google Scholar 

  94. Paw U K T, Falk M, Suchanek T H, et al. Carbon dioxide exchange between an old-growth forest and the atmosphere. Ecosystems, 2004, 7(7): 513–524

    Google Scholar 

  95. Zhou G, Liu S, Li Z, et al. Old-growth forests can accumulate carbon in soils. Science, 2006, 314: 1417

    Article  Google Scholar 

  96. Fredeen A L, Waughtal J D, Pypker T G. When do replanted sub-boreal clearcuts become net sinks for CO2? Forest Ecol Manag, 2007, 239(1–3): 210–216

    Article  Google Scholar 

  97. Howard E A, Gower S T, Foley J A, et al. Effects of logging on carbon dynamics of a jack pine forest in Saskatchewan, Canada. Global Change Biol, 2004, 10(8): 1267–1284

    Article  Google Scholar 

  98. Amiro B D. Paired-tower measurements of carbon and energy fluxes following disturbance in the boreal forest. Global Change Biol, 2001, 7(3): 253–268

    Article  Google Scholar 

  99. Litvak M, Miller S, Wofsy S C, et al. Effect of stand age on whole ecosystem CO2 exchange in the Canadian boreal forest. J Geophys Res, 2003, 108(D3): 8225

    Article  Google Scholar 

  100. Law B E, Thornton P E, Irvine J, et al. Carbon storage and fluxes in ponderosa pine forests at different developmental stages. Global Change Biol, 2001, 79(7): 755–777

    Article  Google Scholar 

  101. Roser C, Montagnani L, Schulze E-D, et al. Net CO2 exchange rates in three different successional stages of the “Dark Taiga” of central Siberia. Tellus, 2002, 54B(5): 642–654

    Google Scholar 

  102. Ryan M G, Binkley D, Fownes J H, et al. An experimental test of the causes of forest growth decline with stand age. Ecol Monogr, 2004, 74(3): 393–414

    Article  Google Scholar 

  103. Grant R F, Black T A, Humphreys E R, et al. Changes in net ecosystem productivity with forest age following clearcutting of a coastal Douglas-fir forest: Testing a mathematical model with eddy covariance measurements along a forest chronosequence. Tree Physiol, 2007, 27(1): 115–131

    Google Scholar 

  104. Noormets A, Desai A R, Cook B D, et al. Moisture sensitivity of ecosystem respiration: Comparison of 14 forest ecosystems in the Upper Great Lakes Region, USA. Agric For Meteorol, 2008, 148(2): 216–230

    Article  Google Scholar 

  105. Tang J, Bolstad P V, Desai A R, et al. Ecosystem respiration and its components in an old-growth forest in the Great Lakes region of the United States. Agric For Meteorol, 2008, 148(2): 171–185

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChuanKuan Wang.

Additional information

Supported by “115” Science and Technology Supporting Program of China (Grant No. 2006BAD03A0703) and the National Natural Science Foundation of China (Grant Nos. 30625010 and 30590381)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Wang, C. & Yu, G. Spatio-temporal patterns of forest carbon dioxide exchange based on global eddy covariance measurements. Sci. China Ser. D-Earth Sci. 51, 1129–1143 (2008). https://doi.org/10.1007/s11430-008-0087-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-008-0087-3

Keywords

Navigation