Skip to main content
Log in

New strategy for reversing biofilm-associated antibiotic resistance through ferrocene-substituted carborane ruthenium(II)-arene complex

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Bacterial biofilms are inherently resistant to antimicrobial agents and are difficult to eradicate with conventional antimicrobial agents, resulting in many persistent and chronic bacterial infections. In this contribution, a new strategy for reversing the biofilm-associated antibiotic resistance has been explored by induction of a carborane ruthenium(II)-arene complex (FcRuSB). Our results demonstrate that the FcRuSB could be utilized as an inducer to efficiently reverse the biofilm-associated antibiotic resistance of multidrug-resistant (MDR) clinical isolates of Staphylococcus aureus and Pseudomonas aeruginosa. The induced effect of FcRuSB is correlated with a considerable decrease in the expression of extracellular matrix proteins (EMP) of the two strains. The considerable decrease of the EMP of induced cells, resulting in the reduction of adherence and biofilm formation ability of the two types of MDR pathogens, and then can cause significantly enhanced sensitivity of them to antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu HL, Chen JN, Jiang J, Giesy JP, Yu HX, Wang XR. Cytotoxicity of HC Orange NO. 1 to L929 fibroblast cells. Environ Toxicol Phar, 2008, 26: 309–314

    CAS  Google Scholar 

  2. Potera C. Forging a link between biofilms and disease. Science, 1999, 283: 1837–1839

    CAS  Google Scholar 

  3. Davey ME, O’toole GA. Microbial biofilms: From ecology to molec ular genetics. Microbiol Mol Biol R, 2000, 64: 847–867

    CAS  Google Scholar 

  4. Smith K, Perez A, Ramage G, Gemmell CG, Lang S. Comparison of biofilm-associated cell survival following in vitro exposure of meticillin-resistant Staphylococcus aureus biofilms to the antibiotics clin-damycin, daptomycin, linezolid, tigecycline and vancomycin. Int J Antimicrob Ag, 2009, 33: 374–378

    CAS  Google Scholar 

  5. Gilbert P, Das J, Foley I. Biofilm susceptibility to antimicrobials. Adv Dent Res, 1997, 11: 160–167

    CAS  Google Scholar 

  6. Lefebvre F, Putaj P, Basset JM, Wang XX, Fu XZ. Modification of the adsorption and catalytic properties of micro- and mesoporous materials by reactions with organometallic complexes. Science China-chemistry, 2010, 53: 1862–1869

    CAS  Google Scholar 

  7. Fish RH, Jaouen G. Bioorganometallic chemistry: Structural diversity of organometallic complexes with bioligands and molecular recognition studies of several supramolecular hosts with biomolecules, alkalimetal ions, and organometallic pharmaceuticals. Organometallics, 2003, 22: 2166–2177

    CAS  Google Scholar 

  8. van Staveren DR, Metzler-Nolte N. Bioorganometallic chemistry of ferrocene. Chem Rev, 2004, 104: 5931–5985

    Google Scholar 

  9. Chantson JT, Falzacappa MVV, Crovella S, Metzler-Nolte N. Antibacterial activities of ferrocenoyl- and cobaltocenium-peptide bioconjugates. J Organomet Chem, 2005, 690: 4564–4572

    CAS  Google Scholar 

  10. Asghar F, Badshah A, Shah A, Rauf MK, Ali MI, Tahir MN, Nosheen E, Rehman Z, Qureshi R. Synthesis, characterization and DNA binding studies of organoantimony(V) ferrocenyl benzoates. J Organomet Chem, 2012, 717: 1–8

    CAS  Google Scholar 

  11. Arbi ME, Pigeon P, Top S, Rhouma A, Aifa S, Rebai A, Vessières A, Plamont MA, Jaouen G. Evaluation of bactericidal and fungicidal activity of ferrocenyl or phenyl derivatives in the diphenyl butene series. J Organomet Chem, 2011, 696: 1038–1048

    Google Scholar 

  12. Plażuk D, Rychlik B, Blauz A, Domagała S. Synthesis, electrochemistry and anticancer activity of novel ferrocenyl phenols prepared via azide-alkyne 1,3-cycloaddition reaction. J Organomet Chem, 2012, 715: 102–112

    Google Scholar 

  13. Ornelas C. Application of ferrocene and its derivatives in cancer research. New J Chem, 2011, 35: 1973–1985

    CAS  Google Scholar 

  14. Delhaes L, Biot C, Berry L, Delcourt P, Maciejewski LA, Camus D, Brocard JS, Dive D. Synthesis of ferroquine enantiomers: First investigation of effects of metallocenic chirality upon antimalarial activity and cytotoxicity. ChemBioChem, 2002, 3: 418–423

    CAS  Google Scholar 

  15. Biot C, Taramelli D, Forfar-Bares I, Maciejewski LA, Boyce M, Nowogrocki G, Brocard JS, Basilico N, Olliaro P, Egan TJ. Insights into the mechanism of action of ferroquine. Relationship between physicochemical properties and antiplasmodial activity. Mol Pharmaceutics, 2005, 2: 185–193

    CAS  Google Scholar 

  16. Biot C, Delhaes L, Abessolo H, Domarle O, Maciejewski LA, Mortuaire M, Delcourt P, Deloron P, Camus D, Dive D, Brocard JS. Novel metallocenic compounds as antimalarial agents. Study of the position of ferrocene in chloroquine. J Organomet Chem, 1999, 589: 59–65

    CAS  Google Scholar 

  17. Jaouen G, Top S, Vessieres A, Leclercq G, McGlinchey MJ. The first organometallic selective estrogen receptor modulators (SERMs) and their relevance to breast cancer. Curr Med Chem, 2004, 11: 2505–2517

    CAS  Google Scholar 

  18. Top S, Vessieres A, Leclercq G, Quivy J, Tang J, Vaissermann J, Huche M, Jaouen G. Synthesis, biochemical properties and molecular modelling studies of organometallic specific estrogen receptor modulators (SERMs), the ferrocifens and hydroxyferrocifens: Evidence for an antiproliferative effect of hydroxyferrocifens on both hormone-dependent and hormone-independent breast cancer cell lines. Chem-Eur J, 2003, 9: 5223–5236

    CAS  Google Scholar 

  19. Edwards EI, Epton R, Marr G. Organometallic derivatives of penicillins and cephalosporins a new class of semi-synthetic antibiotics. J Organomet Chem, 1975, 85: C23–C25

    CAS  Google Scholar 

  20. Edwards EI, Epton R, Marr G. A new class of semi-synthetic antibiotics: Ferrocenyl-penicillins and -cephalosporins. J Organomet Chem, 1976, 107: 351–357

    CAS  Google Scholar 

  21. Valliant JF, Guenther KJ, King AS, Morel P, Schaffer P, Sogbein OO, Stephenson KA. The medicinal chemistry of carboranes. Coord Chem Re, 2002, 232: 173–230

    CAS  Google Scholar 

  22. Wu CH, Ye HD, Jiang H, Wang XM, Yan H. Study on specific interaction of new ferrocene-substituted carborane conjugates with hemoglobin protein. Sci China Chem, 2012, 55: 594–603

    CAS  Google Scholar 

  23. Armstrong AF, Valliant JF. The bioinorganic and medicinal chemistry of carboranes: From new drug discovery to molecular imaging and therapy. Dalton T, 2007, 4240-4251

  24. Li SH, Wu CY, Lv XY, Tang X, Zhao XQ, Yan H, Jiang H, Wang XM. Discovery of ferrocene-carborane derivatives as novel chemical antimicrobial agents against multidrug-resistant bacteria. Sci China Chem, 2012, 55: 2388–2395

    CAS  Google Scholar 

  25. Bregadze VI, Sivaev IB, Glazun SA. Polyhedral boron compounds as potential diagnostic and therapeutic antitumor agents. Anticancer Agents Med Chem, 2006, 6: 75–109

    CAS  Google Scholar 

  26. Soloway AH, Tjarks W, Barnum BA, Rong FG, Barth RF, Codogni IM, Wilson JG. The chemistry of neutron capture therapy. Chem Rev, 1998, 98: 1515–1562

    CAS  Google Scholar 

  27. Miyajima Y, Nakamura H, Kuwata Y, Lee JD, Masunaga S, Ono K, Maruyama K. Transferrin-loaded nido-carborane liposomes: Tumor-targeting boron delivery system for neutron capture therapy. Bioconjugate Chem, 2006, 17: 1314–1320

    CAS  Google Scholar 

  28. Wu CH, Wu DH, Liu X, Guoyiqibayi G, Guo DD, Lv G, Wang XM, Yan H, Jiang H, Lu ZH. Ligand-based neutral ruthenium(II) arene complex: Selective anticancer action. Inorg chem, 2009, 48: 2352–2354

    CAS  Google Scholar 

  29. Wu DH, Wu CH, Li YZ, Guo DD, Wang XM, Yan H. Addition of ethynylferrocene to transition-metal complexes containing a chelating 1,2-dicarba-closo-dodecaborane-1,2-dichalcogenolate ligand—in vitro cooperativity of a ruthenium compound on cellular uptake of an anticancer drug. Dalton T, 2009, 285-290

  30. Wu C, Ye H, Bai W, Li Q, Guo D, Lv G, Yan H, Wang X. New potential anticancer agent of carborane derivatives: Selective cellular interaction and activity of ferrocene-substituted dithio-o-carborane conjugates. Bioconjugate Chem, 2011, 22: 16–25

    CAS  Google Scholar 

  31. Xu BH, Peng XQ, Li YZ, Yan H. Reactions of 16e CpCo half-sandwich complexes containing a chelating 1,2-dicarba-closo-dodecaborane-1,2-dichalcogenolate ligand with ethynylferrocene and dimethyl acetylenedicarboxylate. Chem-Eur J, 2008, 14: 9347–9356

    CAS  Google Scholar 

  32. Xu BH, Peng XQ, Xu ZW, Li YZ, Yan H. Cobalt(III)-mediated disulfuration and hydrosulfuration of alkynes. Inorg Chem, 2008, 47: 7928–7933

    CAS  Google Scholar 

  33. Wu C, Xu B, Zhao J, Jiang Q, Wei F, Jiang H, Wang X, Yan H. Ferrocene-substituted dithio-o-carborane isomers: Influence on the native conformation of myoglobin protein. Chem-Eur J, 2010, 16: 8914–8922

    CAS  Google Scholar 

  34. Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: Approved standard, 8th ed, Document M7-A8, Wayne, PA: CLSI, 2008

    Google Scholar 

  35. Pettit RK, Weber CA, Kean MJ, Hoffmann H, Pettit GR, Tan R, Franks KS, Horton ML. Microplate alamar blue assay for Staphylococcus epidermidis biofilm susceptibility testing. Antimicrob Agents Ch, 2005, 49: 2612–2617

    CAS  Google Scholar 

  36. Hirose I, Sano K, Shioda I, Kumano M, Nakamura K, Yamane K. Proteome analysis of Bacillus subtilis extracellular proteins: A two-dimensional protein electrophoretic study. Microbiology+, 2000, 146: 65–75

    CAS  Google Scholar 

  37. Tunney MM, Ramage G, Field TR, Moriarty TF, Storey DG. Rapid colorimetric assay for antimicrobial susceptibility testing of Pseudomonas aeruginosa. Antimicrob Agents Ch, 2004, 48: 1879–1881

    CAS  Google Scholar 

  38. Kwon AS, Park GC, Ryu SY, Lim DH, Lim DY, Choi CH, Park Y, Lim Y. Higher biofilm formation in multidrug-resistant clinical isolates of Staphylococcus aureus. Int J Antimicrob Ag, 2008, 32: 68–72

    CAS  Google Scholar 

  39. Corrigan RM, Rigby D, Handley P, Foster TJ. The role of Staphylococcus aureus surface protein SasG in adherence and biofilm formation. Microbiology+, 2007, 153: 2435–2446

    CAS  Google Scholar 

  40. Mengodin E, Bajolet O, Cutrona J, Bonnet N, Dupuit F, Puchelle E, de Bentzmann S. Fibronectin-binding proteins of Staphylococcus aureus are involved in adherence to human airway epithelium. Infect Immun, 2002, 70: 620–630

    Google Scholar 

  41. Joh D, Wann ER, Kreikemeyer B, Speziale P, Höök M. Role of fibronectin-binding MSCRAMMs in bacterial adherence and entry into mammalian cells. Matrix Biol, 1999, 18: 211–223

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XueMei Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, S., Wu, C., Tang, X. et al. New strategy for reversing biofilm-associated antibiotic resistance through ferrocene-substituted carborane ruthenium(II)-arene complex. Sci. China Chem. 56, 595–603 (2013). https://doi.org/10.1007/s11426-012-4812-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4812-6

Keywords

Navigation