Skip to main content
Log in

Methodology of non-equilibrium thermodynamics for kinetics research of CO2 capture by ionic liquids

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

In this paper, the methodology of non-equilibrium thermodynamics is introduced for kinetics research of CO2 capture by ionic liquids, and the following three key scientific problems are proposed to apply the methodology in kinetics research of CO2 capture by ionic liquids: reliable thermodynamic models, interfacial transport rate description and accurate experimental flux. The obtaining of accurate experimental flux requires reliable experimental kinetics data and the effective transport area in the CO2 capture process by ionic liquids. Research advances in the three key scientific problems are reviewed systematically and further work is analyzed. Finally, perspectives of non-equilibrium thermodynamic research of the kinetics of CO2 capture by ionic liquids are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bachu S. Sequestration of CO2 in geological media: criteria and approach for site selection in response to climate change. Energ Convers Manage, 2000, 41: 953–970

    Article  CAS  Google Scholar 

  2. Ji YH, Ji XY, Feng X, Liu C, Lu LH, Lu XH. Progress in the study on the phase equilibria of the CO2-H2O and CO2-H2O-NaCl systems. Chinese J Chem Eng, 2007, 15: 439–448

    Article  CAS  Google Scholar 

  3. D’Alessandro DM, Smit B, Long JR. Carbon dioxide capture: Prospects for new materials. Angew Chem Int Edit, 2010, 49: 6058–6082

    Article  CAS  Google Scholar 

  4. Ai N, Chen J, Fei WY. Solubility of carbon dioxide in four mixed solvents. J Chem Eng Data, 2005, 50: 492–496

    Article  CAS  Google Scholar 

  5. Zhang JM, Zhang SJ, Dong K, Zhang YQ, Shen YQ, Lu XM. Supported absorption of CO2 by tetrabutylphosphonium amino acid ionic liquids. Chem Eur J, 2006, 12: 4021–4026

    Article  CAS  Google Scholar 

  6. Zhang YQ, Zhang SJ, Lu XM, Zhou Q, Fan W, Zhang XP. Dual amino-functionalised phosphonium ionic liquids for CO2 capture. Chem Eur J, 2009, 15: 3003–3011

    Article  CAS  Google Scholar 

  7. Bara JE, Camper DE, Gin DL, Noble RD. Room-temperature ionic liquids and composite materials: platform technologies for CO2 capture. Accounts Chem Res, 2010, 43: 152–159

    Article  CAS  Google Scholar 

  8. Wang C, Mahurin SM, Luo H, Baker GA, Li H, Dai S. Reversible and robust CO2 capture by equimolar task-specific ionic liquid-superbase mixtures. Green Chem, 2010, 12: 870–874

    Article  CAS  Google Scholar 

  9. Zhao YS, Zhang XP, Zeng SJ, Zhou Q, Dong HF, Tian X, Zhang SJ. Density, viscosity, and performances of carbon dioxide capture in 16 absorbents of amine + ionic liquid + H2O, ionic liquid + H2O, and amine + H2O systems. J Chem Eng Data, 2010, 55: 3513–3519

    Article  CAS  Google Scholar 

  10. Bishno S, Rochel GT. Absorption of carbon dioxide in aqueous piperazine/methyldiethanolamine. AIChE J, 2002, 48: 2788–2799

    Article  Google Scholar 

  11. Lepaumier H, Picq D, Carrette P. New amines for CO2 capture. I. Mechanisms of amine degradation in the pressure of CO2. Ind Eng Chem Res, 2009, 48: 9061–9067

    Article  CAS  Google Scholar 

  12. Bandyopadhyay A. Amine versus ammonia absorption of CO2 as a measure of reducing GHG emission: a critical analysis. Clean Technol Envir, 2011, 13: 269–294

    Article  CAS  Google Scholar 

  13. Puxty G, Rowland R. Modeling CO2 mass transfer in amine mixtures: PZ-AMP and PZ-MDEA. Environ Sci Technol, 2011, 45: 2398–2405

    Article  CAS  Google Scholar 

  14. Yan X, Zhang L, Zhang Y, Yang G, Yan Z. Amine-modified SBA-15: Effect of pore structure on the performance for CO2 capture. Ind Eng Chem Res, 2011, 50: 3220–3226

    Article  CAS  Google Scholar 

  15. Blanchard LA, Hancu D, Beckman EJ, Brennecke JF. Green processing using ionic liquids and CO2. Nature, 1999, 399: 28–29

    Article  Google Scholar 

  16. Blanchard LA, Gu ZY, Brennecke JF. High-pressure phase behavior of ionic liquid/CO2 systems. J Phys Chem B, 2001, 105: 2437–2444

    Article  CAS  Google Scholar 

  17. Bates ED, Mayton RD, Ntai I, Davis JH Jr. CO2 capture by a task-specific ionic liquid. J Am Chem Soc, 2002, 124: 926–927

    Article  CAS  Google Scholar 

  18. Cadena C, Anthony JL, Shah JK, Morrow TI, Brennecke JF, Maginn EJ. Why is CO2 so soluble in imidazolium-based ionic liquids? J Am Chem Soc, 2004, 126: 5300–5308

    Article  CAS  Google Scholar 

  19. Zhang SJ, Yuan XL, Chen YH, Zhang XP. Solubilities of CO2 in 1-Butyl-3-methylimidazolium hexafluorophosphate and 1,1,3,3-tetramethylguanidium Lactate at elevated pressures. J Chem Eng Data, 2005, 50: 1582–1585

    Article  CAS  Google Scholar 

  20. Zhang SJ, Chen YH, Ren RXF, Zhang YQ, Zhang JM, Zhang XP. Solubility of CO2 in sulfonate ionic liquids at high pressure. J Chem Eng Data, 2005, 50: 230–233

    Article  CAS  Google Scholar 

  21. Anthony JL, Anderson JL, Maginn EJ, Brennecke JF. Anion effects on gas solubility in ionic liquids. J Phys Chem B, 2005, 109: 6366–6374

    Article  CAS  Google Scholar 

  22. Zhang SJ, Chen YH, Li FW, Lu XM, Dai WB, Mori R. Fixation and conversion of CO2 using ionic liquids. Catal Today, 2006, 115: 61–69

    Article  CAS  Google Scholar 

  23. Chen YH, Zhang SJ, Yuan XL, Zhang YQ, Zhang XP, Dai WB, Mori R. Solubility of CO2 in imidazolium-based tetrafluoroborate ionic liquids. Thermochim Acta, 2006, 441: 42–44

    Article  CAS  Google Scholar 

  24. Yu GR, Zhang SJ, Yao XQ, Zhang JM, Dong K, Dai WB, Mori R. Design of task-specific ionic liquids for capturing CO2: a molecular orbital study. Ind Eng Chem Res, 2006, 45: 2875–2880

    Article  CAS  Google Scholar 

  25. Zhang XC, Liu ZP, Wang WC. Screening of ionic liquids to capture CO2 by COSMO-RS and experiments. AIChE J, 2008, 54: 2717–2728

    Article  CAS  Google Scholar 

  26. Camper D, Bara JE, Gin DL, Noble RD. Room-temperature ionic liquid-amine solutions: Tunable solvents for efficient and reversible capture of CO2. Ind Eng Chem Res, 2008, 47: 8496–8498

    Article  CAS  Google Scholar 

  27. Zhang XC, Huo F, Liu ZP, Wang WC, Shi W, Maginn EJ. Absorption of CO2 in the ionic liquid 1-n-Hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([hmim][FEP]): A molecular view by computer simulations. J Phys Chem B, 2009, 113: 7591–7598

    Article  CAS  Google Scholar 

  28. Zhang XC, Zhang SJ, Zuo Y, Zhao GY, Zhang XP. Preparation and applications of ionic liquids (in Chinese). Prog Chem, 2010, 22: 1499–1508

    CAS  Google Scholar 

  29. Zhang SJ, Zhang XP, Zhao YS, Zhao GY, Yao XQ, Yao HW. A novel ionic liquids-based scrubbing process for efficient CO2 capture. Sci China Chem, 2010, 53: 1549–1553

    Article  CAS  Google Scholar 

  30. Zhao YS, Zhang XP, Dong HF, Zhen YP, Li GH, Zeng SJ, Zhang SJ. Solubilities of gases in novel alcamines ionic liquid 2-[2-hydroxythyl (methyl) amino] ethanol chloride. Fluid Phase Equilibr, 2011, 302: 60–64

    Article  CAS  Google Scholar 

  31. Liu C, Ji Y, Shao Q, Feng X, Lu X. Thermodynamic analysis for synthesis of advanced materials. Molecular thermodynamics of complex systems. Structure and Bonding, 2009, 131: 193–270

    Article  CAS  Google Scholar 

  32. Ji YH, Ji XY, Liu C, Feng X, Lu XH. Modelling of mass transfer coupling with crystallization kinetics in microscale. Chem Eng Sci, 2010, 65: 2649–2655

    Article  CAS  Google Scholar 

  33. Lu XH, Ji YH, Liu HL. Non-equilibrium thermodynamics analysis and its application in interfacial mass transfer. Sci China Chem, 2011, 54: 1659–1666

    Article  CAS  Google Scholar 

  34. Elliott JAW, Elmoazzen HY, McGann LE. A method whereby Onsager coefficients may be evaluated. J Chem Phys, 2000, 113: 6573–6578

    Article  CAS  Google Scholar 

  35. Demirel Y, Sandler SI. Nonequilibrium thermodynamics in engineering and science. J Phys Chem B, 2003, 108: 31–43

    Article  CAS  Google Scholar 

  36. Anthony JL, Maginn EJ, Brennecke JF. Solubilities and thermodynamic properties of gases in the ionic liquid 1-n-butyl-3-methylimi-dazolium hexafluorophosphate. J Phys Chem B, 2002, 106: 7315–7320

    Article  CAS  Google Scholar 

  37. Kamps ÁP, Tuma D, Xia J, Maurer G. Solubility of CO2 in the ionic liquid [bmim][PF6]. J Chem Eng Data, 2003, 48: 746–749

    Article  CAS  Google Scholar 

  38. Husson-Borg P, Majer V, Costa Gomes MF. Solubilities of oxygen and carbon dioxide in butyl methyl imidazolium tetrafluoroborate as a function of temperature and at pressures close to atmospheric pressure. J Chem Eng Data, 2003, 48: 480–485

    Article  CAS  Google Scholar 

  39. Liu ZM, Wu WZ, Han BX, Dong ZX, Zhao GY, Wang JQ, Jiang T, Yang GY. Study on the phase behaviors, viscosities, and thermodynamic properties of CO2/[C4mim][PF6]/methanol system at elevated pressures. Chem Eur J, 2003, 9: 3897–3903

    Article  CAS  Google Scholar 

  40. Scovazzo P, Camper D, Kieft J, Poshusta J, Koval C, Noble R. Regular solution theory and CO2 gas solubility in room-temperature ionic liquids. Ind Eng Chem Res, 2004, 43: 6855–6860

    Article  CAS  Google Scholar 

  41. Shariati A, Peters CJ. High-pressure phase behavior of systems with ionic liquids: II. The binary system carbon dioxide+1-ethyl-3-methylimidazolium hexafluorophosphate. J Supercrit Fluid, 2004, 29: 43–48

    Article  CAS  Google Scholar 

  42. Cadena C, Anthony JL, Shah JK, Morrow TI, Brennecke JF, Maginn EJ. Why is CO2 so soluble in Imidazolium-based ionic liquids? J Am Chem Soc, 2004, 126: 5300–5308

    Article  CAS  Google Scholar 

  43. Aki S, Mellein BR, Saurer EM, Brennecke JF. High-pressure phase behavior of carbon dioxide with imidazolium-based ionic liquids. J Phys Chem B, 2004, 108: 20355–20365

    Article  CAS  Google Scholar 

  44. Shariati A, Peters CJ. High-pressure phase behavior of systems with ionic liquids-Part III. The binary system carbon dioxide+1-hexyl-3-methylimidazolium hexafluorophosphate. J Supercrit Fluid, 2004, 30: 139–144

    Article  CAS  Google Scholar 

  45. Kim YS, Choi WY, Jang JH, Yoo KP, Lee CS. Solubility measurement and prediction of carbon dioxide in ionic liquids. Fluid Phase Equilibr, 2005, 228: 439–445

    Article  CAS  Google Scholar 

  46. Kroon MC, Shariati A, Costantini M, van Spronsen J, Witkamp GJ, Sheldon RA, Peters CJ. High-pressure phase behavior of systems with ionic liquids: Part V. The binary system carbon dioxide+1-butyl-3-methylimidazolium tetrafluoroborate. J Chem Eng Data, 2005, 50: 173–176

    Article  CAS  Google Scholar 

  47. Shiflett MB, Yokozeki A. Solubilities and diffusivities of carbon dioxide in ionic liquids: [bmim][PF6] and [bmim][BF4]. Ind Eng Chem Res, 2005, 44: 4453–4464

    Article  CAS  Google Scholar 

  48. Anthony JL, Anderson JL, Maginn EJ, Brennecke JF. Anion effects on gas solubility in ionic liquids. J Phys Chem B, 2005, 109: 6366–6374

    Article  CAS  Google Scholar 

  49. Morgan D, Ferguson L, Scovazzo P. Diffusivities of gases in room-temperature ionic liquids: data and correlations obtained using a lag-time technique. Ind Eng Chem Res, 2005, 44: 4815–4823

    Article  CAS  Google Scholar 

  50. Costantini M, Toussaint VA, Shariati A, Peters CJ, Kikic I. High-pressure phase behavior of systems with ionic liquids: Part IV. Binary system carbon dioxide + 1-hexyl-3-methylimidazolium tetrafluoroborate. J Chem Eng Data, 2005, 50: 52–55

    CAS  Google Scholar 

  51. Shariati A, Gutkowski K, Peters CJ. Comparison of the phase behavior of some selected binary systems with ionic liquids. AIChE J, 2005, 51: 1532–1540

    Article  CAS  Google Scholar 

  52. Camper D, Becker C, Koval C, Noble R. Diffusion and solubility measurements in room temperature ionic liquids. Ind Eng Chem Res, 2006, 45: 445–450

    Article  CAS  Google Scholar 

  53. KumeŁan J, Kamps ÁP, Tuma D, Maurer G. Solubility of CO2 in the ionic liquid [hmim][Tf2N]. J Chem Thermodynamics, 2006, 38: 1396–1401

    Article  CAS  Google Scholar 

  54. Gutkowski KI, Shariati A, Peters CJ. High-pressure phase behavior of the binary ionic liquid system 1-octyl-3-methylimidazolium tetrafluoroborate + carbon dioxide. J Supercrit Fluid, 2006, 39: 187–191

    Article  CAS  Google Scholar 

  55. Oh DJ, Lee BC. High-pressure phase behavior of carbon dioxide in ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsul-fonyl)imide. Korean J Chem Eng, 2006, 23: 800–805

    Article  CAS  Google Scholar 

  56. Jacquemin J, Husson P, Majer V, Costa Gomes MF. Low-pressure solubilities and thermodynamics of solvation of eight gases in 1-butyl-3-methylimidazolium hexafluorophosphate. Fluid Phase Equilibr, 2006, 240: 87–95

    Article  CAS  Google Scholar 

  57. Shiflett MB, Yokozeki A. Solubility and diffusivity of hydrofluorocarbons in room-temperature ionic liquids. AIChE J, 2006, 52: 1205–1219

    Article  CAS  Google Scholar 

  58. Lee BC, Outcalt SL. Solubilities of gases in the ionic liquid 1-n-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. J Chem Eng Data, 2006, 51: 892–897

    Article  CAS  Google Scholar 

  59. Kumełan J, Kamps APS, Tuma D, Maurer G. Solubility of CO2 in the ionic liquids [bmim][CH3SO4] and [bmim][PF6]. J Chem Eng Data, 2006, 51: 1802–1807

    Article  CAS  Google Scholar 

  60. Yuan XL, Zhang SJ, Liu J, Lu XM. Solubilities of CO2 in hydroxyl ammonium ionic liquids at elevated pressures. Fluid Phase Equilibr, 2007, 257: 195–200

    Article  CAS  Google Scholar 

  61. Bara JE, Gabriel CJ, Lessmann S, Carlisle TK, Finotello A, Gin DL, Noble RD. Enhanced CO2 separation selectivity in oligo(ethylene glycol) functionalized room-temperature ionic liquids. Ind Eng Chem Res, 2007, 46: 5380–5386

    Article  CAS  Google Scholar 

  62. Blasig A, Tang J, Hu X, Tan SP, Shen Y, Radosz M. Carbon dioxide solubility in polymerized ionic liquids containing ammonium and imidazolium cations from magnetic suspension balance: P[VBTMA][BF4] and P[VBMI][BF4]. Ind Eng Chem Res, 2007, 46: 5542–5547

    Article  CAS  Google Scholar 

  63. Shiflett MB, Yokozeki A. Solubility of CO2 in room temperature ionic liquid [hmim][Tf2N]. J Phys Chem B, 2007, 111: 2070–2074

    Article  CAS  Google Scholar 

  64. Schilderman AM, Raeissi S, Peters CJ. Solubility of carbon dioxide in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethyl-sulfonyl)imide. Fluid Phase Equilibr, 2007, 260: 19–22

    Article  CAS  Google Scholar 

  65. Ferguson L, Scovazzo P. Solubility, diffusion, and permeability of gases in phosphonium-based room temperature ionic liquids: data and correlations. Ind Eng Chem Res, 2007, 46: 1369–1374

    Article  CAS  Google Scholar 

  66. Hou Y, Baltus RE. Experimental measurement of the solubility and diffusivily of CO2 in room-temperature ionic liquids using a transient thin-liquid-film method. Ind Eng Chem Res, 2007, 46: 8166–8175

    Article  CAS  Google Scholar 

  67. Jacquemin J, Husson P, Majer V, Gomes MFC. Influence of the cation on the solubility of CO2 and H2 in ionic liquids based on the bis(trifluoromethylsulfonyl)imide anion. J Solution Chem, 2007, 36: 967–979

    Article  CAS  Google Scholar 

  68. Gomes MFC. Low-pressure solubility and thermodynamics of solvation of carbon dioxide, ethane, and hydrogen in 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide between temperatures of 283 K and 343 K. J Chem Eng Data, 2007, 52: 472–475

    Article  CAS  Google Scholar 

  69. Kim YS, Jang JH, Lim BD, Kang JW, Lee CS. Solubility of mixed gases containing carbon dioxide in ionic liquids: Measurements and predictions. Fluid Phase Equilibr, 2007, 256: 70–74

    Article  CAS  Google Scholar 

  70. Muldoon MJ, Aki SNVK, Anderson JL, Dixon JK, Brennecke JF. Improving carbon dioxide solubility in ionic liquids. J Phys Chem B, 2007, 111: 9001–9009

    Article  CAS  Google Scholar 

  71. Shi W, Sorescu DC, Luebke DR, Keller MJ, Wickramanayake S. Molecular simulations and experimental studies of solubility and diffusivity for pure and mixed gases of H2, CO2, and Ar absorbed in the ionic liquid 1-n-hexyl-3-methylimidazolium bis(trifluorome-thylsulfony)amide ([hmim][Tf2N]). J Phys Chem B, 2010, 114: 6531–6541

    Article  CAS  Google Scholar 

  72. Soriano AN, Doma BT, Li MH. Solubility of carbon dioxide in 1-ethyl-3-methylimidazolium tetrafluoroborate. J Chem Eng Data, 2008, 53: 2550–2555

    Article  CAS  Google Scholar 

  73. Shin EK, Lee BC, Lim JS. High-pressure solubilities of carbon dioxide in ionic liquids: 1-Alkyl-3-methylimidazolium bis(trifluoro-methylsulfonyl)imide. J Supercrit Fluid, 2008, 45: 282–292

    Article  CAS  Google Scholar 

  74. Heintz YJ, Sehabiague L, Morsi BI, Jones KL, Luebke DR, Pennline HW. Hydrogen sulfide and carbon dioxide removal from dry fuel gas streams using an ionic liquid as a physical solvent. Energ Fuel, 2009, 23: 4822–4830

    Article  CAS  Google Scholar 

  75. Andanson J, Jutz F, Baiker A. Supercritical CO2/ionic liquid systems: what can we extract from infrared and raman spectra? J Phys Chem B, 2009, 113: 10249–10254

    Article  CAS  Google Scholar 

  76. Ahosseini A, Ren W, Scurto AM. Understanding biphasic ionic liquid/CO2 systems for homogeneous catalysis: hydroformylation. Ind Eng Chem Res, 2009, 48: 4254–4265

    Article  CAS  Google Scholar 

  77. Raeissi S, Peters CJ. A potential ionic liquid for CO2-separating gas membranes: selection and gas solubility studies. Green Chem, 2009, 11: 185–192

    Article  CAS  Google Scholar 

  78. Carvalho PJ, Álvarez VH, Machado JJB, Pauly J, Daridon JL, Marrucho IM, Aznar M, Coutinho JAP. High pressure phase behavior of carbon dioxide in 1-alkyl-3-methylimidazolium bis(trifluorome-thylsulfonyl)imide ionic liquids. J Supercrit Fluid, 2009, 48: 99–107

    Article  CAS  Google Scholar 

  79. Raeissi S, Peters CJ. Carbon dioxide solubility in the homologous 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide family. J Chem Eng Data, 2009, 54: 382–386

    CAS  Google Scholar 

  80. Carvalho PJ, Álvarez VH, Marrucho IM, Aznar M, Coutinho JAP. High pressure phase behavior of carbon dioxide in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and 1-butyl-3-methylimidazolium dicyanamide ionic liquids. J Supercrit Fluid, 2009, 50: 105–111

    Article  CAS  Google Scholar 

  81. Moganty SS, Baltus RE. Regular solution theory for low pressure carbon dioxide solubility in room temperature ionic liquids: ionic liquid solubility parameter from activation energy of viscosity. Ind Eng Chem Res, 2010, 49: 5846–5853

    Article  CAS  Google Scholar 

  82. Shokouhi M, Adibi M, Jalili AH, Hosseini-Jenab M, Mehdizadeh A. Solubility and diffusion of H2S and CO2 in the ionic liquid 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate. J Chem Eng Data, 2010, 55: 1663–1668

    Article  CAS  Google Scholar 

  83. Jalili AH, Mehdizadeh A, Shokouhi M, Ahmadi AN, Hosseini-Jenab M, Fateminassab F. Solubility and diffusion of CO2 and H2S in the ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate. J Chem Thermodynamics, 2010, 42: 1298–1303

    Article  CAS  Google Scholar 

  84. Shiflett MB, Yokozeki A. Separation of CO2 and H2S using room-temperature ionic liquid [bmim][PF6]. Fluid Phase Equilibr, 2010, 294: 105–113

    Article  CAS  Google Scholar 

  85. Bogel-Lukasik R, Matkowska D, Bogel-Lukasik E, Hofman T. Isothermal vapour-liquid equilibria in the binary and ternary systems consisting of an ionic liquid, 1-propanol and CO2. Fluid Phase Equilibr, 2010, 293: 168–174

    Article  CAS  Google Scholar 

  86. Kodama D, Kanakubo M, Kokubo M, Ono T, Kawanami H, Yokoyama T, Nanjo H, Kato M. CO2 absorption properties of Brønsted acid-base ionic liquid composed of N,N-dimethylformamide and bis(trifluoromethanesulfonyl)amide. J Supercrit Fluid, 2010, 52: 189–192

    Article  CAS  Google Scholar 

  87. KumeŁan J, Tuma D, Kamps ÁP, Maurer G. Solubility of the single gases carbon dioxide and hydrogen in the ionic liquid [bmpy][Tf2N]. J Chem Eng Data, 2010, 55: 165–172

    Article  CAS  Google Scholar 

  88. Lei ZG, Yuan J, Zhu JQ. Solubility of CO2 in propanone, 1-ethyl-3-methylimidazolium tetrafluoroborate, and their mixtures. J Chem Eng Data, 2010, 55: 4190–4194

    Article  CAS  Google Scholar 

  89. Revelli AL, Mutelet F, Jaubert JN. High carbon dioxide solubilities in imidazolium-based ionic liquids and in poly(ethylene glycol) dimethyl ether. J Phys Chem B, 2010, 114(40): 12908–12913

    Article  CAS  Google Scholar 

  90. Ren W, Sensenich B, Scurto AM. High-pressure phase equilibria of {carbon dioxide (CO2) + n-alkyl-imidazolium bis(trifluoromethyl-sulfonyl)amide} ionic liquids. J Chem Thermodynamics, 2010, 42: 305–311

    Article  CAS  Google Scholar 

  91. Hwang S, Park Y, Park K. Measurement and prediction of phase behaviour for 1-alkyl-3-methylimidazolium tetrafluoroborate and carbon dioxide: effect of alkyl chain length in imidazolium cation. J Chem Thermodynamics, 2011, 43: 339–343

    Article  CAS  Google Scholar 

  92. Vega LF, Vilaseca O, Llovell F, Andreu JS. Modeling ionic liquids and the solubility of gases in them: recent advances and perspectives. Fluid Phase Equilibr, 2010, 294: 15–30

    Article  CAS  Google Scholar 

  93. Wang TF, Peng CJ, Liu HL, Hu Y. Description of the pVT behavior of ionic liquids and the solubility of gases in ionic liquids using an equation of state. Fluid Phase Equilibr, 2006, 250: 150–157

    Article  CAS  Google Scholar 

  94. Kroon MC, Karakatsani EK, Economou IG, Witkamp G, Peters CJ. Modeling of the carbon dioxide solubility in imidazolium-based ionic liquids with the tPC-PSAFT equation of state. J Phys Chem B, 2006, 110: 9262–9269

    Article  CAS  Google Scholar 

  95. Andreu JS, Vega LF. Capturing the solubility behavior of CO2 in ionic liquids by a simple model. J Phys Chem C, 2007, 111: 16028–16034

    Article  CAS  Google Scholar 

  96. Álvarez VH, Aznar M. Thermodynamic modeling of vapor-liquid equilibrium of binary systems ionic liquid + supercritical {CO2 or CHF3} and ionic liquid + hydrocarbons using Peng-Robinson equation of state. J Chin Inst Chem Eng, 2008, 39: 353–360

    Article  CAS  Google Scholar 

  97. Ji X, Adidharma H. Thermodynamic modeling of CO2 solubility in ionic liquid with heterosegmented statistical associating fluid theory. Fluid Phase Equilibr, 2010, 293: 141–150

    Article  CAS  Google Scholar 

  98. Shah JK, Maginn EJ. A Monte Carlo simulation study of the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate: liquid structure, volumetric properties and infinite dilution solution thermodynamics of CO2. Fluid Phase Equilibr, 2004, 222–223: 195–203

    Article  CAS  Google Scholar 

  99. Urukova I, Vorholz J, Maurer G. Solubility of CO2, CO, and H2 in the ionic liquid [bmim][PF6] from Monte Carlo simulations. J Phys Chem B, 2005, 109: 12154–12159

    Article  CAS  Google Scholar 

  100. Shah JK, Maginn EJ. Monte Carlo simulations of gas solubility in the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate. J Phys Chem B, 2005, 109: 10395–10405

    Article  CAS  Google Scholar 

  101. Wang Y, Pan H, Li H, Wang C. Force field of the TMGL ionic liquid and the solubility of SO2 and CO2 in the TMGL from molecular dynamics simulation. J Phys Chem B, 2007, 111: 10461–10467

    Article  CAS  Google Scholar 

  102. Shi W, Maginn EJ. Atomistic simulation of the absorption of carbon dioxide and water in the ionic liquid 1-n-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([hmim][Tf2N]). J Phys Chem B, 2008, 112: 2045–2055

    Article  CAS  Google Scholar 

  103. Zhang X, Huo F, Liu Z, Wang W, Shi W, Maginn EJ. Absorption of CO2 in the ionic liquid 1-n-hexyl-3-methylimidazolium tris(penta-fluoroethyl)trifluorophosphate ([hmim][FEP]): A molecular view by computer simulations. J Phys Chem B, 2009, 113: 7591–7598

    Article  CAS  Google Scholar 

  104. Kerlé D, Ludwig R, Geiger A, Paschek D. Temperature dependence of the solubility of carbon dioxide in imidazolium-based ionic liquids. J Phys Chem B, 2009, 113: 12727–12735

    Article  CAS  Google Scholar 

  105. Moganty SS, Baltus RE. Diffusivity of carbon dioxide in room-temperature ionic liquids. Ind Eng Chem Res, 2010, 49: 9370–9376

    Article  CAS  Google Scholar 

  106. Sánchez LMG, Meindersma GW, de Haan AB. Kinetics of absorption of CO2 in amino-functionalized ionic liquids. Chem Eng J, 2011, 166: 1104–1115

    Article  CAS  Google Scholar 

  107. Yang J, Duan J, Fornasiero D, Ralston J. Kinetics of CO2 nanobubble formation at the solid/water interface. Phys Chem Chem Phys, 2007, 9: 6327–6332

    Article  CAS  Google Scholar 

  108. Dong HF, Wang XL, Liu L, Zhang XP, Zhang SJ. The rise and deformation of a single bubble in ionic liquids. Chem Eng Sci, 2010, 65: 3240–3248

    Article  CAS  Google Scholar 

  109. Wang XL, Dong HF, Zhang XP, Yu L, Zhang SJ, Xu Y. Numerical simulation of single bubble motion in ionic liquids. Chem Eng Sci, 2010, 65: 6036–6047

    Article  CAS  Google Scholar 

  110. Wang XL, Dong HF, Zhang XP, Xu Y, Zhang SJ. Numerical simulation of absorbing CO2 with ionic liquids. Chem Eng Technol, 2010, 33: 1615–1624

    Article  CAS  Google Scholar 

  111. Ji YH, Ji XY, Lu XH, Tu YM. Modeling mass transfer of CO2 in brine at high pressures by chemical potential gradient. Ind Eng Chem Res, 2012, in revision

  112. Ward CA. The rate of gas absorption at a liquid interface. J Chem Phys, 1977, 67: 229–235

    Article  CAS  Google Scholar 

  113. Ward CA, Findlay RD, Rizk M. Statistical rate theory of interfacial transport. I. Theoretical development. J Chem Phys, 1982, 76: 5599–5605

    Article  CAS  Google Scholar 

  114. Ward CA, Rizk M, Tucker AS. Statistical rate theory of interfacial transport. II. Rate of isothermal bubble evolution in a liquid-gas solution. J Chem Phys, 1982, 76: 5606–5614

    Article  CAS  Google Scholar 

  115. Dejmek M, Ward CA. A statistical rate theory study of interface concentration during crystal growth or dissolution. J Chem Phys, 1998, 108: 8698–8704

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoHua Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, X., Ji, Y., Feng, X. et al. Methodology of non-equilibrium thermodynamics for kinetics research of CO2 capture by ionic liquids. Sci. China Chem. 55, 1079–1091 (2012). https://doi.org/10.1007/s11426-012-4523-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4523-z

Keywords

Navigation