Skip to main content
Log in

New mixed finite elements for plane elasticity and Stokes equations

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We consider mixed finite elements for the plane elasticity system and the Stokes equation. For the unmodified Hellinger-Reissner formulation of elasticity in which the stress and displacement fields are the primary unknowns, we derive two new nonconforming mixed finite elements of triangle type. Both elements use piecewise rigid motions to approximate the displacement and piecewise polynomial functions to approximate the stress, where no vertex degrees of freedom are involved. The two stress finite element spaces consist respectively of piecewise quadratic polynomials and piecewise cubic polynomials such that the divergence of each space restricted to a single simplex is contained in the corresponding displacement approximation space. We derive stability and optimal order approximation for the elements. We also give some numerical results to verify the theoretical results.

For the Stokes equation, introducing the symmetric part of the gradient tensor of the velocity as a stress variable, we present a stress-velocity-pressure field Stokes system. We use some plane elasticity mixed finite elements, including the two elements we proposed, to approximate the stress and velocity fields, and use continuous piecewise polynomial functions to approximate the pressure with the gradient of the pressure approximation being in the corresponding velocity finite element spaces. We derive stability and convergence for these methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amara M, Thomas J M. Equilibrium finite elements for the linear elastic problem. Numer Math, 1979 33: 367–383

    Article  MATH  MathSciNet  Google Scholar 

  2. Arnold D N, Awanou G. Rectangular mixed finite elements for elasticity. Math Models Methods Appl Sci, 2005, 15: 1417–1429

    Article  MATH  MathSciNet  Google Scholar 

  3. Arnold D N, Brezzi F, Douglas J Jr. Peers: A new mixed finite element for plane elasticity. Jpn J Appl Math, 1984, 1: 347–367

    Article  MATH  MathSciNet  Google Scholar 

  4. Arnold D N, Douglas J Jr, Gupta C P. A family of higher order mixed finite element methods for plane elasticity. Numer Math, 1984, 45: 1–22

    Article  MATH  MathSciNet  Google Scholar 

  5. Arnold D N, Falk R S. A new mixed formulation for elasticity. Numer Math, 1988, 53: 13–30

    Article  MATH  MathSciNet  Google Scholar 

  6. Arnold D N, Winther R. Mixed finite elements for elasticity. Numer Math, 2002, 92: 401–419

    Article  MATH  MathSciNet  Google Scholar 

  7. Arnold D N, Winther R. Nonconforming mixed elements for elasticity. Math Models Methods Appl Sci, 2003, 13: 295–307

    Article  MATH  MathSciNet  Google Scholar 

  8. Behr M A, Franca L P, Tezduyar T E. Stabilized finite element methods for the velocity-pressure-stress formulation of incompressible flows. Comput Methods Appl Mech Engrg, 1993, 104: 31–48

    Article  MATH  MathSciNet  Google Scholar 

  9. Bochev P B, Gunzburger M D. Least-squares for the velocity-pressure-stress formulation of the stokes equations. Comput Methods Appl Mech Engrg, 1995, 126: 267–287

    Article  MATH  MathSciNet  Google Scholar 

  10. Bochev P B, Gunzburger M D. Finite element methods of least- squares type. SIAM Review, 1998, 40: 789–837

    Article  MATH  MathSciNet  Google Scholar 

  11. Bramble J H, Lazarov R D, Pasciak J. Least-squares methods for linear elasticity based on a discrete minus one inner product. Comput Methods Appl Mech Engng, 2001, 191: 727–744

    Article  MATH  MathSciNet  Google Scholar 

  12. Brezzi F. On the existence, uniqueness and approximation of saddle point problems arising from Lagrange multipliers. RAIRO Numer Anal, 1974, 8: 129–151

    MathSciNet  Google Scholar 

  13. Brezzi F, Fortin M. Mixed and Hybrid Finite Element Methods. Berlin: Springer-Verlag, 1991

    MATH  Google Scholar 

  14. Cai Z, Lee B, Wang P. Least-squares methods for incompressible newtonian fluid flow: Linear stationary problems. SIAM J Numer Anal, 2004, 42: 843–859

    Article  MATH  MathSciNet  Google Scholar 

  15. Cai Z, Manteuffel T A, McCormick S F. First-order system least squares for second-order partial differential equations: Part II. SIAM J Numer Anal, 1997, 34: 425–454

    Article  MATH  MathSciNet  Google Scholar 

  16. Chang C L. A mixed finite element method for the stokes problem: an accelerations-pressure formulation. Appl Math Comput, 1990, 36: 135–146

    Article  MATH  MathSciNet  Google Scholar 

  17. Farhloul M, Fortin M. Dual hybrid methods for the elasticity and the stokes problems: a unified approach. Numer Math, 1997, 76: 419–440

    Article  MATH  MathSciNet  Google Scholar 

  18. Farhloul M, Zine A M. A new mixed finite element method for the stokes problem. J Math Anal Appl, 2002, 276: 329–342

    Article  MATH  MathSciNet  Google Scholar 

  19. Fraejis de Veubeke B M. Displacement and equilibrium models in the finite element method. In: Zienkiewicz O C, Holister G, eds. Stress Analysis. New York: Wiley, 1965, 145–197

    Google Scholar 

  20. Franca L P, Stenberg R. Error analysis of Galerkin least squares methods for the elasticity equations. SIAM J Numer Anal, 1991, 28: 1680–1697

    Article  MATH  MathSciNet  Google Scholar 

  21. Girault V, Raviart P A. Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Berlin-New York: Springer-Verlag, 1986

    MATH  Google Scholar 

  22. Gunzburger M D. Finite Element Methods for Viscous Incompressible Flows: A Guide to Theory, Practice, and Algorithms. London: Academic Press, 1989

    MATH  Google Scholar 

  23. Hu J, Shi Z C. Lower order rectangular nonconforming mixed finite elements for plane elasticity. SIAM J Numer Anal, 2007, 46: 88–102

    Article  MathSciNet  Google Scholar 

  24. Jiang B. The Least-Squares Finite Element Method: Theory and Applications in Computational Fluid Dynamics and Electro-Magnetics. Berlin: Springer, 1998

    Google Scholar 

  25. Johnson C. A mixed finite element method for the Navier-Stokes equations. RAIRO M2AN, 1978, 12: 335–348

    MATH  Google Scholar 

  26. Johnson C, Mercier B. Some equilibrium finite element methods for two-dimensional elasticity problems. Numer Math, 1978, 30: 103–116

    Article  MATH  MathSciNet  Google Scholar 

  27. Mignot A L, Surry C. A mixed finite element family in plane elasticity. Appl Math Model, 1981, 5: 259–262

    Article  MATH  MathSciNet  Google Scholar 

  28. Stein E, Rolfes R. Mechanical conditions for stability and optimal convergence of mixed finite elements for linear plane elasticity. Comput Methods Appl Mech Engrg, 1990, 84: 77–95

    Article  MATH  MathSciNet  Google Scholar 

  29. Stenberg R. On the construction of optimal mixed finite element methods for the linear elasticity problem. Numer Math, 1986, 48: 447–462

    Article  MATH  MathSciNet  Google Scholar 

  30. Stenberg R. A family of mixed finite elements for the elasticity problem. Numer Math, 1988, 53: 513–538

    Article  MATH  MathSciNet  Google Scholar 

  31. Stenberg R. Two low-order mixed methods for the elasticity problem. In: The Mathematics of Finite Elements and Applications, vol. VI. London: Academic Press, 1988, 271–280

    Google Scholar 

  32. Watwood Jr V B, Hartz B J. An equilibrium stress field model for finite element solution of two-dimensional elastostatic problems. Internat J Solids Structures, 1968, 4: 857–873

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoPing Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, X., Xu, J. New mixed finite elements for plane elasticity and Stokes equations. Sci. China Math. 54, 1499–1519 (2011). https://doi.org/10.1007/s11425-011-4171-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-011-4171-3

Keywords

MSC(2000)

Navigation