Skip to main content
Log in

Homogenization theory for a replenishing passive scalar field

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

Homogenization theory provides a rigorous framework for calculating the effective diffusivity of a decaying passive scalar field in a turbulent or complex flow. The authors extend this framework to the case where the passive scalar fluctuations are continuously replenished by a source (and/or sink). The basic structure of the homogenized equations carries over, but in some cases the homogenized source can involve a non-trivial coupling of the velocity field and the source. The authors derive expressions for the homogenized source term for various multiscale source structures and interpret them physically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ottino, J. M., Mixing, chaotic advection, and turbulence, Ann. Rev. Fluid Mech., 22, 1990, 207–254.

    Article  MathSciNet  Google Scholar 

  2. Majda, A. J. and Kramer, P. R., Simplified models for turbulent diffusion: theory, numerical modelling, and physical phenomena, Phys. Rep., 314(4–5), 1999, 237–574.

    Article  MathSciNet  Google Scholar 

  3. Papanicolaou, G. C. and Varadhan, S. R. S., Boundary value problems with rapidly oscillating random coefficients, Random Fields: Rigorous Results in Statistical Mechanics and Quantum Field Theory, Colloquia Mathematica Societatis János Bolyai, 2, J. Fritz, J. L. Lebowitz and D. Szasz (eds.), North-Holland, Amsterdam, 1979, 835–873.

  4. Cioranescu, D. and Donato, P., An Introduction to Homogenization, Oxford University Press, New York, 1999.

    MATH  Google Scholar 

  5. Bensoussan, A., Lions, J. L. and Papanicolaou, G., Asymptotic Analysis for Periodic Structures, Studies in Mathematics and Its Applications, 5, North-Holland, Amsterdam, 1978.

  6. Jikov, V. V., Kozlov, S. M. and Oleinik, O. A., Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin, 1994, 55–85.

    Google Scholar 

  7. Avellaneda, M. and Vergassola, M., Stieltjes integral representation of effective diffusivities in timedependent flows, Phys. Rev. E, 52(3), 1995, 3249–3251.

    Article  MathSciNet  Google Scholar 

  8. Avellaneda, M. and Majda, A. J., Stieltjes integral representation and effective diffusivity bounds for turbulent transport, Phys. Rev. Lett., 62(7), 1989, 753–755.

    Article  Google Scholar 

  9. Fannjiang, A. and Papanicolaou, G., Diffusion in turbulence, Prob. Th. Rel. Fields, 105(3), 1996, 279–334.

    Article  MATH  MathSciNet  Google Scholar 

  10. Oelschläger, K., Homogenization of a diffusion process in a divergence-free random field, Ann. Probab., 16(3), 1988, 1084–1126.

    Article  MATH  MathSciNet  Google Scholar 

  11. Olla, S., Homogenization of Diffusion Processes in Random Fields, Lecture Notes at Ecole Polytechnique, Ecole Polytechnique, Paris, 1994.

    Google Scholar 

  12. Plasting, S. C. and Young, W. R., A bound on scalar variance for the advection-diffusion equation, J. Fluid Mech., 552, 2006, 289–298.

    Article  MATH  MathSciNet  Google Scholar 

  13. Abraham, E. R. and Bowen, M. M., Chaotic stirring by a mesoscale surfaceocean flow, Chaos, 12(2), 2002, 373–381.

    Article  MATH  MathSciNet  Google Scholar 

  14. Martin, A. P., Phytoplankton patchiness: the role of lateral stirring and mixing, Prog. Oceanogr., 57, 2003, 125–174.

    Article  Google Scholar 

  15. Shaw, T. A., Thiffeault, J.-L. and Doering, C. R., Stirring up trouble: multi-scale mixing measures for steady scalar sources, Phys. D, 231(2), 2007, 143–164.

    Article  MATH  MathSciNet  Google Scholar 

  16. Avellaneda, M. and Majda, A. J., An integral representation and bounds on the effective diffusivity in passive advection by laminar and turbulent flows, Comm. Math. Phys., 138, 1991, 339–391.

    Article  MATH  MathSciNet  Google Scholar 

  17. Lin, Z., Bod’ová, K. and Doering, C. R., Measures of mixing and effective diffusion scalings, 2009, preprint.

  18. Koch, D. L. and Brady, J. F., The symmetry properties of the effective diffusivity tensor in anisotropic porous media, Phys. Fluids, 30(3), 1987, 642–650.

    Article  MATH  Google Scholar 

  19. Middleton, J. F. and Loder, J. W., Skew fluxes in polarized wave fields, J. Phys. Oceanogr., 19, 1989, 68–76.

    Article  Google Scholar 

  20. Moffatt, H. K., Transport effects associated with turbulence with particular attention to the influence of helicity, Rep. Prog. Phys., 46, 1983, 621–664.

    Article  Google Scholar 

  21. Griffies, S. M., The Gent-McWilliams skew flux, J. Phys. Oceanogr., 28, 1998, 831–841.

    Article  Google Scholar 

  22. Gent, P. R., Willebrand, J., McDougall, T. J., et al, Parameterizing eddy-induced tracer transports in ocean circulation models, J. Phys. Oceanogr., 25, 1995, 463–474.

    Article  Google Scholar 

  23. Canuto, V. M., The physics of subgrid scales in numerical simulations of stellar convection: are they dissipative, advective, or diffusive? Astrophys. J. Lett., 541, 2000, L79–L82.

    Article  Google Scholar 

  24. Keating, S. R. and Kramer, P. R., A homogenization perspective on mixing efficiency measures, 2009, preprint.

  25. Lin, C. C. and Segel, L. A., Mathematics Applied to Deterministic Problems in the Natural Sciences, With material on elasticity by G. H. Handelman, With a foreword by Robert E. O’Malley, Jr., SIAM, Philadelphia, 1988.

    Google Scholar 

  26. Folland, G. B., Introduction to Partial Differential Equations, Second Edition, Princeton University Press, Princeton, 1995.

    MATH  Google Scholar 

  27. Goudon, T. and Poupaud, F., Homogenization of transport equations: weak mean field approximation, SIAM J. Math. Anal., 36(3), 2005, 856–881.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter R. Kramer.

Additional information

Dedicated to Professor Andrew Majda on the Occasion of his 60th Birthday with Gratitude and Admiration

Project supported by the National Science Foundation “Collaborations in Mathematical Geosciences” (No. OCE-0620956).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kramer, P.R., Keating, S.R. Homogenization theory for a replenishing passive scalar field. Chin. Ann. Math. Ser. B 30, 631–644 (2009). https://doi.org/10.1007/s11401-009-0196-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-009-0196-0

Keywords

2000 MR Subject Classification

Navigation