Skip to main content
Log in

Challenges in Understanding Genome-Wide DNA Methylation

  • Survey
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

DNA methylation is a chemical modification of the bases in genomes. This modification, most frequently found at CpG dinucleotides in eukaryotes, has been identified as having multiple critical functions in broad and diverse species of animals and plants, while mysteriously appears to be lacking from several other well-studied species. DNA methylation has well known and important roles in genome stability and defense, its pattern change highly correlates with gene regulation. Much evidence has linked abnormal DNA methylation to human diseases. Most prominently, aberrant DNA methylation is a common feature of cancer genomes. Elucidating the precise functions of DNA methylation therefore has great biomedical significance. Here we provide an update on large-scale experimental technologies for detecting DNA methylation on a genomic scale. We also discuss new prospect and challenges that computational biologist will face when analyzing DNA methylation data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schwartz D C, Waterman M S. New generations: Sequencing machines and their computational challenges. J. Comput. Sci. & Technol., 2010, 25(1): 3-9.

    Article  Google Scholar 

  2. Holliday R, Pugh J E. DNA modification mechanisms and gene activity during development. Science, 1975, 187(4173): 226-232.

    Article  Google Scholar 

  3. Riggs A. X inactivation, differentiation, and DNA methylation. Cytogenet. Cell. Genet., 1975, 14(1): 9-25.

    Article  Google Scholar 

  4. Bird A. DNA methylation patterns and epigenetic memory. Genes & Development, 2002, 16(1): 6-21.

    Article  MathSciNet  Google Scholar 

  5. Bestor T H. The DNA methyltransferases of mammals. Human Molecular Genetics, 2000, 9(16): 2395-2402.

    Article  Google Scholar 

  6. Yoder J A, Walsh C P, Bestor T H. Cytosine methylation and the ecology of intragenomic parasites. Trends in Genetics, 1997, 13(8): 335-340.

    Article  Google Scholar 

  7. Bestor T H. Cytosine methylation mediates sexual conflict. Trends in Genetics, 2003, 19(4): 185-190.

    Article  Google Scholar 

  8. Gonzalgo M L, Jones P A. Rapid quantitation of methylation differences at specific sites using methylation-sensitive single nucleotide primer extension (Ms-SNuPE). Nucleic Acids Research, 1997, 25(12): 2529-2531.

    Article  Google Scholar 

  9. Simmen M W. Genome-scale relationships between cytosine methylation and dinucleotide abundances in animals. Genomics, 2008, 92(1): 33-40.

    Article  Google Scholar 

  10. Cooper D N, Youssoufian H. The CpG dinucleotide and human genetic disease. Human Genetics, 1988, 78(2): 151-155.

    Article  Google Scholar 

  11. Jiang C, Zhao Z. Mutational spectrum in the recent human genome inferred by single nucleotide polymorphisms. Genomics, 2006, 88(5): 527-534.

    Article  MathSciNet  Google Scholar 

  12. Wood L D, Parsons D W, Jones S et al. The genomic landscapes of human breast and colorectal cancers. Science, 2007, 318(5853): 1108-1113.

    Article  Google Scholar 

  13. Human Epigenome Consortium. http://www.epigenome.org/, Accessed Sept. 16, 2009.

  14. Epigenomics — Overview. Division of Program Coordination, Planning, and Strategic Initiatives, National Institutes of Healt. http://nihroadmap.nih.gov/epigenomics/, Accessed Sept. 16, 2009.

  15. Raleigh E A. Organization and function of the mcrBC genes of Escherichia coli K-12. Molecular Microbiology, 1992, 6(9): 1079-1086.

    Article  Google Scholar 

  16. Bird A P. Use of restriction enzymes to study eukaryotic DNA methylation: II. The symmetry of methylated sites supports semi-conservative copying of the methylation pattern. Journal of Molecular Biology, 1978, 118(1): 49-60.

    Article  MathSciNet  Google Scholar 

  17. Gruenbaum Y, Cedar H, Razin A. Restriction enzyme digestion of hemimethylated DNA. Nucl. Acids Res., 1981, 9(11): 2509-2515.

    Article  Google Scholar 

  18. Lippman Z, Gendrel A V, Colot V, Martienssen R. Profiling DNA methylation patterns using genomic tiling microarrays. Nature Methods, 2005, 2(3): 219-224.

    Article  Google Scholar 

  19. Weber M, Davies J J, Wittig D, Oakeley E J, Haase M, Lam W L, Schubeler D. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat. Genet., 2005, 37(8): 853-862.

    Article  Google Scholar 

  20. Down T A, Rakyan V K, Turner D J et al. A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nat. Biotech., 2008, 26(7): 779-785.

    Article  Google Scholar 

  21. Xiong Z, Laird P W. COBRA: A sensitive and quantitative DNA methylation assay. Nucleic Acids Research, 1997, 25(12): 2532-2534.

    Article  Google Scholar 

  22. Zhou D, Qiao W, Yang L, Lu Z. Bisulfite-modified target DNA array for aberrant methylation analysis. Analytical Biochemistry, 2006, 351(1): 26-35.

    Article  Google Scholar 

  23. Ehrich M, Nelson M R, Stanssens P et al. Quantitative highthroughput analysis of DNA methylation patterns by basespecific cleavage and mass spectrometry. Proc. Natl. Acad. Sci. USA, 2005, 102(44): 15785-15790.

    Article  Google Scholar 

  24. Smith A D, Xuan Z, Zhang M Q. Using quality scores and longer reads improves accuracy of Solexa read mapping. BMC Bioinformatics, 2008, 9: 128.

    Article  Google Scholar 

  25. Meissner A, Mikkelsen T S, Gu H et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature, 2008, 475(7205): 766-770.

    Google Scholar 

  26. Ball M P, Li J B, Gao Y et al. Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nature Biotechnology, 2009, 27(4): 361-368.

    Article  Google Scholar 

  27. Deng J, Shoemaker R, Xie B et al. Targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming. Nature Biotechnology, 2009, 27(4): 353-360.

    Article  Google Scholar 

  28. Smith A D, Chung W, Hodges E, Kendall J, Hannon G, Hicks J, Xuan Z, Zhang M Q. Updates to the RMAP short-read mapping software. Bioinformatics, 2009, 25(21): 2841-2842.

    Article  Google Scholar 

  29. Li R, Li Y, Kristiansen K, Wang J. Soap: Short oligonucleotide alignment program. Bioinformatics, 2008, 24(5): 713-714.

    Article  Google Scholar 

  30. Langmead B, Trapnell C, Pop M, Salzberg S. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology, 2009, 10(3): R25.

    Article  Google Scholar 

  31. Lister R, Ecker J, Ren B. 2009. (Personal Communication)

  32. Hodges E, Smith A D, Kendall J et al. High definition profiling of mammalian DNA methylation by array capture and single molecule bisulfite sequencing. Genome Research, 2009, 19(9): 1593-1605.

    Article  Google Scholar 

  33. Eckhardt F, Lewin J, Cortese R et al. DNA methylation profiling of human chromosomes 6, 20 and 22. Nat. Genet., 2006, 38(12): 1378-1385.

    Article  Google Scholar 

  34. Das R, Dimitrova N, Xuan Z et al. Computational prediction of methylation status in human genomic sequences. Proc. Natl. Acad. Sci. USA, 2006, 103(28): 10713-10716.

    Article  Google Scholar 

  35. Vilkaitis G, Suetake I, Klimasauskas S, Tajima S. Processive methylation of hemimethylated CpG sites by mouse Dnmt1 DNA methyltransferase. J. Biol. Chem., 2005, 280(1): 64-72.

    Google Scholar 

  36. Sebat J, Lakshmi B, Troge J et al. Large-scale copy number polymorphism in the human genome. Science, 2004, 305(5683): 525-528.

    Article  Google Scholar 

  37. Model F, Adorjan P, Olek A, Piepenbrock C. Feature selection for DNA methylation based cancer classification. Bioinformatics, 2001, 17(Suppl. 1): S157-S164.

    Google Scholar 

  38. Lister R, Ecker J R. Finding the fifth base: Genome-wide sequencing of cytosine methylation. Genome Research, 2009, 19(6): 959-968.

    Article  Google Scholar 

  39. Watt F, Molloy P L. Cytosine methylation prevents binding to DNA of a HeLa cell transcription factor required for optimal expression of the adenovirus major late promoter. Genes & Development, 1988, 2(9): 1136-1143.

    Article  Google Scholar 

  40. Bell A C, Felsenfeld G. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf 2 gene. Nature, 2000, 405(6785): 482-485.

    Article  Google Scholar 

  41. Lewis J D, Meehan R R, Henzel W J et al. Purification, sequence, and cellular localization of a novel chromosomal protein that binds to Methylated DNA. Cell, 1992, 69(6): 905-914.

    Article  Google Scholar 

  42. Klose R J, Sarraf S A, Schmiedeberg L, McDermott S M, Stancheva I, Bird A P. DNA binding selectivity of MeCP2 due to a requirement for A/T sequences adjacent to Methyl-CpG. Molecular Cell, 2005, 19(5): 667-678.

    Article  Google Scholar 

  43. Tompa M, Li N, Bailey T L et al. Assessing computational tools for the discovery of transcription factor binding sites. Nat. Biotechnol., 2005, 23(1): 137-144.

    Article  Google Scholar 

  44. Li M, Ma B, Wang L. On the closest string and substring problems. Journal of the ACM, 2002, 49(2): 157-171.

    Article  MathSciNet  Google Scholar 

  45. Reya T, Morrison S J, Clarke M F, Weissman I L. Stem cells, cancer, and cancer stem cells. Nature, 2001, 414(6859): 105-111.

    Article  Google Scholar 

  46. Riesenfeld C S, Schloss P D, Handelsman J. Metagenomics: Genomic analysis of microbial communities. Annu. Rev. Genet., 2004, 38: 525-552.

    Article  Google Scholar 

  47. Ford L, Fulkerson D. Flows in Networks. Princeton University Press, 1962.

  48. Eriksson N, Pachter L, Mitsuya Y et al. Viral population estimation using pyrosequencing. PLoS Comput. Biol., May 2008, 4(5): e1000074.

    Article  MathSciNet  Google Scholar 

  49. Babu M M, Lang B, Aravind L. Methods to reconstruct and compare transcriptional regulatory networks. Methods Mol. Biol., 2009, 541: 163-180.

    Google Scholar 

  50. Hecker M, Lambeck S, Toepfer S, van Someren E, Guthke R. Gene regulatory network inference: Data integration in dynamic models — A review. Biosystems, 2009, 96(1): 86-103.

    Article  Google Scholar 

  51. Bar-Joseph Z, Gerber G K, Lee T I et al. Computational discovery of gene modules and regulatory networks. Nature Biotechnology, 2003, 21(11): 1337-1342.

    Article  Google Scholar 

  52. Lee T I, Rinaldi N J, Robert F et al. Transcriptional regulatory networks in saccharomyces cerevisiae. Science, 2002, 298(5594): 799-804.

    Article  Google Scholar 

  53. Schwikowski B, Uetz P, Fields S. A network of protein-protein interactions in yeast. Nature Biotechnology, 2000, 18(12): 1257-1261.

    Article  Google Scholar 

  54. Beer M A, Tavazoie S. Predicting gene expression from sequence. Cell, 2004, 117(2): 185-198.

    Article  Google Scholar 

  55. Smith A D, Sumazin P, Xuan Z, Zhang M Q. DNA motifs in human and mouse proximal promoters predict tissue-specific expression. Proc. Natl. Acad. Sci. USA, 2006, 103(16): 6275-6280.

    Article  Google Scholar 

  56. Pennacchio L A, Loots G G, Nobrega M A, Ovcharenko I. Predicting tissue-specific enhancers in the human genome. Genome Research, 2007, 17(2): 201-211.

    Article  Google Scholar 

  57. Verona R I, Mann M R W, Bartolomei M S. Genomic imprinting: Intricacies of epigenetic regulation in clusters. Annual Review of Cell and Developmental Biology, 2003, 19(1): 237-259.

    Article  Google Scholar 

  58. Felsenstein J. Evolutionary trees from DNA sequences: A maximum likelihood approach. Journal of Molecular Evolution, 1981, 17(6): 368-376.

    Article  Google Scholar 

  59. Sankoff D. Computational complexity of inferring phylogenies by compatibility. Systematic Zoology, 1986, 35(2): 224-229.

    Article  MathSciNet  Google Scholar 

  60. Gusfield D. Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology. Cambridge University Press, 1997.

  61. Miyamoto T, Iwasaki H., Reizis B, Ye M, Graf T, Weissman I L, Akashi K. Myeloid or lymphoid promiscuity as a critical step in hematopoietic lineage commitment. Developmental Cell, 2002, 3(1): 137-147.

    Article  Google Scholar 

  62. Yatabe Y, Tavaré S, Shibata D. Investigating stem cells in human colon by using methylation patterns. Proc. Natl. Acad. Sci. USA, 2001, 98(19): 10839-10844.

    Article  Google Scholar 

  63. Kim J Y, Tavaré S, Shibata D. Counting human somatic cell replications: Methylation mirrors endometrial stem cell divisions. Proc. Natl. Acad. Sci. USA, 2005, 102(49): 17739-17744.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Q. Zhang.

Additional information

This work is supported by NIH under Grant Nos. ES017166 and HG001696.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, M.Q., Smith, A.D. Challenges in Understanding Genome-Wide DNA Methylation. J. Comput. Sci. Technol. 25, 26–34 (2010). https://doi.org/10.1007/s11390-010-9302-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-010-9302-8

Keywords

Navigation