Skip to main content
Log in

The fate of SPE B after internalization and its implication in SPEB-induced apoptosis

  • Published:
Journal of Biomedical Science

Summary

After streptococcal pyrogenic exotoxin B (SPE B) induces apoptosis, its fate is unknown. Using confocal time-course microscopy at 37 °C, we detected green fluorescence 20 min after adding FITC-SPE B. Orange fluorescence, an indication of co-localization of SPE B with lysosomes which were labeled with a red fluorescent probe, was maximal at 40 min and absent by 60 min. SPE B was co-precipitated with clathrin, which is consistent with endocytotic involvement. Western blotting assay also indicated that uptake of SPE B was maximal at 40 min and disappeared after 60 min. However, in the presence of chloroquine, a lysosome inhibitor, the uptake of SPE B was not detectable. The disappearance of TCA-precipitated FITC-SPE B was parallel to the appearance of TCA soluble FITC-SPE B; in the presence of chloroquine, however, no SPE B degradation occurred. Chloroquine increased the level of SPE B-induced apoptosis by inhibiting the degradation of SPE B. These results suggest that the internalization and degradation of SPE B in cells may be a host defense system that removes toxic substances by sacrificing the exposed cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vieira A.V., Lamaze C., Schmid S.L., Control of EGF receptor signaling by clathrin-mediated endocytosis. Science 274: 2086–2089, 1996

    Article  PubMed  CAS  Google Scholar 

  2. Dikic I., Giordano S., Negative receptor signalling. Curr. Opin. Cell Biol. 15: 128–135, 2003

    Article  PubMed  CAS  Google Scholar 

  3. Duckworth W.C., Insulin degradation: mechanisms, products, and significance. Endocr. Rev. 9: 319–345, 1988

    Article  PubMed  CAS  Google Scholar 

  4. Gorden P, Carpentier J.L., Fan J.Y., Orci L., Receptor mediated endocytosis of polypeptide hormones: mechanism and significance. Metabolism 31: 664–669, 1982

    Article  PubMed  CAS  Google Scholar 

  5. Holler D., Dikic I., Receptor endocytosis via ubiquitin-dependent and -independent pathways. Biochem. Pharmacol. 67: 1013–1017, 2004

    Article  PubMed  CAS  Google Scholar 

  6. Burke P., Schooler K., Wiley H.S., Regulation of epidermal growth factor receptor signaling by endocytosis and intracellular trafficking. Mol. Biol. Cell 12: 1897–1910, 2001

    PubMed  CAS  Google Scholar 

  7. Futter C.E., Pearse A., Hewlett L.J., Hopkins C.R., Multivesicular endosomes containing internalized EGF-EGF receptor complexes mature and then fuse directly with lysosomes. J. Cell Biol. 132: 1011–1023, 1996

    Article  PubMed  CAS  Google Scholar 

  8. Re R.N., The intracrine hypothesis and intracellular peptide hormone action. Bioessays 25: 401–409, 2003

    Article  PubMed  CAS  Google Scholar 

  9. Abrami L., Liu S., Cosson P., Leppla S.H., van der Goot F.G., Anthrax toxin triggers endocytosis of its receptor via a lipid raft-mediated clathrin-dependent process. J. Cell Biol. 160: 321–328, 2003

    Article  PubMed  CAS  Google Scholar 

  10. Lord J.M., Smith D.C., Roberts L.M., Toxin entry: how bacterial proteins get into mammalian cells. Cell. Microbiol. 1: 85–91, 1999

    Article  PubMed  CAS  Google Scholar 

  11. Sandvig K., van Deurs B., Transport of protein toxins into cells: pathways used by ricin, cholera toxin and Shiga toxin. FEBS Lett. 529: 49–53, 2002

    Article  PubMed  CAS  Google Scholar 

  12. Torgersen M.L., Skretting G., van Deurs B., Sandvig K., Internalization of cholera toxin by different endocytic mechanisms. J. Cell. Sci. 114: 3737–3747, 2001

    PubMed  CAS  Google Scholar 

  13. Holm S.E., Norrby A., Bergholm A.M., Norgren M., Aspects of pathogenesis of serious group A streptococcal infections in Sweden, 1988–1989. J. Infect. Dis. 166: 31–37, 1992

    PubMed  CAS  Google Scholar 

  14. Lukomski S., Sreevatsan S., Amberg C., Reichardt W., Woischnik M., Podbielski A., Musser J.M., Inactivation of Streptococcus pyogenes extracellular cysteine protease significantly decreases mouse lethality of serotype M3 and M49 strains. J. Clin. Invest. 99: 2574–2580, 1997

    Article  PubMed  CAS  Google Scholar 

  15. Wheeler M.C., Roe M.H., Kaplan E.L., Schlievert P.M., Todd J.K., Outbreak of group A streptococcus septicemia in children. Clinical, epidemiologic, and microbiological correlates. JAMA 266: 533–537, 1991

    Article  PubMed  CAS  Google Scholar 

  16. Eriksson B.K., Andersson J., Holm S.E., Norgren M., Invasive group A streptococcal infections: T1M1 isolates expressing pyrogenic exotoxins A and B in combination with selective lack of toxin-neutralizing antibodies are associated with increased risk of streptococcal toxic shock syndrome. J. Infect. Dis. 180: 410–418, 1999

    Article  PubMed  CAS  Google Scholar 

  17. Mascini E.M., Jansze M., Schellekens J.F., Musser J.M., Faber J.A., Verhoef-Verhage L.A., Schouls L., van Leeuwen W.J., Verhoef J., van Dijk H., Invasive group A streptococcal disease in the Netherlands: evidence for a protective role of anti-exotoxin A antibodies. J. Infect. Dis. 181: 631–638, 2000

    Article  PubMed  CAS  Google Scholar 

  18. Kuo C.F., Wu J.J., Lin K.Y., Tsai P.J., Lee S.C., Jin Y.T., Lei H.Y., Lin Y.S., Role of streptococcal pyrogenic exotoxin B in the mouse model of group A streptococcal infection. Infect. Immun. 66: 3931–3935, 1998

    PubMed  CAS  Google Scholar 

  19. Lukomski S., Montgomery C.A., Rurangirwa J., Geske R.S., Barrish J.P., Adams G.J., Musser J.M., Extracellular cysteine protease produced by Streptococcus pyogenes participates in the pathogenesis of invasive skin infection and dissemination in mice. Infect. Immun. 67: 1779–1788, 1999

    PubMed  CAS  Google Scholar 

  20. Tsai W.H., Chang C.W., Chuang W.J., Lin Y.S., Wu J.J., Liu C.C., Chang W.T., Lin M.T., Streptococcal pyrogenic exotoxin B-induced apoptosis in A549 cells is mediated by a receptor- and mitochondrion-dependent pathway. Infect. Immun. 72: 7055–7062, 2004

    Article  PubMed  CAS  Google Scholar 

  21. Chen C.Y., Luo S.C., Kuo C.F., Lin Y.S., Wu J.J., Lin M.T., Liu C.C., Jeng W.Y., Chuang W.J., Maturation processing and characterization of streptopain. J. Biol. Chem. 278: 17336–17343, 2003

    Article  PubMed  CAS  Google Scholar 

  22. Kuo C.F., Wu J.J., Tsai P.J., Kao F.J., Lei H.Y., Lin M.T., Lin Y.S., Streptococcal pyrogenic exotoxin B induces apoptosis and reduces phagocytic activity in U937 cells. Infect. Immun. 67: 126–130, 1999

    PubMed  CAS  Google Scholar 

  23. Lukomski S., Burns E.H., Wyde P.R. Jr., Podbielski A., Rurangirwa J., Moore-Poveda D.K., Musser J.M., Genetic inactivation of an extracellular cysteine protease (SpeB) expressed by Streptococcus pyogenes decreases resistance to phagocytosis and dissemination to organs. Infect. Immun. 66: 771–776, 1998

    PubMed  CAS  Google Scholar 

  24. Tsai P.J., Kuo C.F., Lin K.Y., Lin Y.S., Lei H.Y., Chen F.F., Wang J.R., Wu J.J., Effect of group A streptococcal cysteine protease on invasion of epithelial cells. Infect. Immun. 66: 1460–1466, 1998

    PubMed  CAS  Google Scholar 

  25. Kapur V., Topouzis S., Majesky M.W., Li L.L., Hamrick M.R., Hamill R.J., Patti J.M., Musser J.M., A conserved Streptococcus pyogenes extracellular cysteine protease cleaves human fibronectin and degrades vitronectin. Microb. Pathog. 15: 327–346, 1993

    Article  PubMed  CAS  Google Scholar 

  26. Kapur V., Majesky M.W., Li L.L., Black R.A., Musser J.M., Cleavage of interleukin 1 beta (IL-1 beta) precursor to produce active IL-1 beta by a conserved extracellular cysteine protease from Streptococcus pyogenes. Proc. Natl. Acad. Sci. USA 90: 7676–7680, 1993

    Article  PubMed  CAS  Google Scholar 

  27. Burns E.H., Marciel A.M. Jr., Musser J.M., Activation of a 66-kilodalton human endothelial cell matrix metalloprotease by Streptococcus pyogenes extracellular cysteine protease. Infect. Immun. 64: 4744–4750, 1996

    PubMed  CAS  Google Scholar 

  28. Sandvig K., Grimmer S., Lauvrak S.U., Torgersen M.L., Skretting G., van Deurs B., Iversen T.G., Pathways followed by ricin and Shiga toxin into cells. Histochem. Cell Biol. 117: 131–141, 2002

    Article  PubMed  CAS  Google Scholar 

  29. Herreros J., Ng T., Schiavo G., Lipid rafts act as specialized domains for tetanus toxin binding and internalization into neurons. Mol. Biol. Cell 12: 2947–2960, 2001

    PubMed  CAS  Google Scholar 

  30. Herkert M., Shakhman O., Schweins E., Becker C.M., Beta-bungarotoxin is a potent inducer of apoptosis in cultured rat neurons by receptor-mediated internalization. Eur. J. Neurosci. 14: 821–828, 2001

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants NHRI-EX 91-9027SP from the National Health Research Institute and NSC92-3112-B006-006 from the National Science Council, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-T. Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, CW., Tsai, WH., Chuang, WJ. et al. The fate of SPE B after internalization and its implication in SPEB-induced apoptosis. J Biomed Sci 14, 419–427 (2007). https://doi.org/10.1007/s11373-007-9154-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11373-007-9154-6

Keywords

Navigation