Skip to main content

Advertisement

Log in

Life cycle assessment of soybean-based biodiesel in Argentina for export

  • RENEWABLE RESOURCES • CASE STUDY
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Background, aim and scope

Regional specificities are a key factor when analyzing the environmental impact of a biofuel pathway through a life cycle assessment (LCA). Due to different energy mixes, transport distances, agricultural practices and land use changes, results can significantly vary from one country to another. The Republic of Argentina is the first exporter of soybean oil and meal and the third largest soybean producer in the world, and therefore, soybean-based biodiesel production is expected to significantly increase in the near future, mostly for exportation. Moreover, Argentinean biodiesel producers will need to evaluate the environmental performances of their product in order to comply with sustainability criteria being developed. However, because of regional specificities, the environmental performances of this biofuel pathway can be expected to be different from those obtained for other countries and feedstocks previously studied. This work aims at analyzing the environmental impact of soybean-based biodiesel production in Argentina for export. The relevant impact categories account for the primary non-renewable energy consumption (CED), the global warming potential (GWP), the eutrophication potential (EP), the acidification potential (AP), the terrestrial ecotoxicity (TE), the aquatic ecotoxicity (AE), the human toxicity (HT) and land use competition (LU). The paper tackles the feedstock and country specificities in biodiesel production by comparing the results of soybean-based biodiesel in Argentina with other reference cases. Emphasis is put on explaining the factors that contribute most to the final results and the regional specificities that lead to different results for each biodiesel pathway.

Materials and methods

The Argentinean (AR) biodiesel pathway was modelled through an LCA and was compared with reference cases available in the ecoinvent® 2.01 database, namely, soybean-based biodiesel production in Brazil (BR) and the United States (US), rapeseed-based biodiesel production in the European Union (EU) and Switzerland (CH) and palm-oil-based biodiesel production in Malaysia (MY). In all cases, the systems were modelled from feedstock production to biodiesel use as B100 in a 28 t truck in CH. Furthermore, biodiesel pathways were compared with fossil low-sulphur diesel produced and used in CH. The LCA was performed according to the ISO standards. The life cycle inventory and the life cycle impact assessment (LCIA) were performed in Excel spreadsheets using the ecoinvent® 2.01 database. The cumulative energy demand (CED) and the GWP were estimated through the CED for fossil and nuclear energy and the IPCC 2001 (climate change) LCIA methods, respectively. Other impact categories were assessed according to CML 2001, as implemented in ecoinvent. As the product is a fuel for transportation (service), the system was defined for one vehicle kilometre (functional unit) and was divided into seven unit processes, namely, agricultural phase, soybean oil extraction and refining, transesterification, transport to port, transport to the destination country border, distribution and utilisation.

Results

The Argentinean pathway results in the highest GWP, CED, AE and HT compared with the reference biofuel pathways. Compared with the fossil reference, all impact categories are higher for the AR case, except for the CED. The most significant factor that contributes to the environmental impact in the Argentinean case varies depending on the evaluated category. Land provision through deforestation for soybean cultivation is the most impacting factor of the AR biodiesel pathway for the GWP, the CED and the HT categories. Whilst nitrogen oxide emissions during the fuel use are the main cause of acidification, nitrate leaching during soybean cultivation is the main factor of eutrophication. LU is almost totally affected by arable land occupation for soybean cultivation. Cypermethrin used as pesticide in feedstock production accounts for almost the total impact on TE and AE.

Discussion

The sensitivity analysis shows that an increase of 10% in the soybean yield, whilst keeping the same inputs, will reduce the total impact of the system. Avoiding deforestation is the main challenge to improve the environmental performances of soybean-based biodiesel production in AR. If the soybean expansion can be done on marginal and set-aside agricultural land, the negative impact of the system will be significantly reduced. Further implementation of crops’ successions, soybean inoculation, reduced tillage and less toxic pesticides will also improve the environmental performances. Using ethanol as alcohol in the transesterification process could significantly improve the energy balance of the Argentinean pathway.

Conclusions

The main explaining factors depend on regional specificities of the system that lead to different results from those obtained in the reference cases. Significantly different results can be obtained depending on the level of detail of the input data, the use of punctual or average data and the assumptions made to build up the LCA inventory. Further improvement of the AR biodiesel pathways should be done in order to comply with international sustainability criteria on biofuel production.

Recommendations and perspectives

Due to the influence of land use changes in the final results, more efforts should be made to account for land use changes others than deforestation. More data are needed to determine the part of deforestation attributable to soybean cultivation. More efforts should be done to improve modelling of interaction between variables and previous crops in the agricultural phase, future transesterification technologies and market prices evolution. In order to assess more accurately the environmental impact of soybean-based biodiesel production in Argentina, further considerations should be made to account for indirect land use changes, domestic biodiesel consumption and exportation to other regions, production scale and regional georeferenced differentiation of production systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • ADEME (2002) Bilans énergétiques et gaz à effet de serre des filières de production des biocarburants, rapport technique. ADEME, DIREM, PriceWaterhouseCoopers

  • Asal S, Marcus R (2005) An analysis of the obstacles to the development of a sustainable biodiesel industry in Argentina. Report. Université Paris-Dauphine. DU-Développement Durable & Organisations

  • Bauen A, Watson P, Howes J (2007) Carbon reporting within the renewable transport fuel obligation: methodology. E4tech

  • Benbrook CM (2005) Rust, resistance, run down soils and rising costs—problems facing soybean producers in Argentina. Ag Biotech InfoNet, Technical Paper no. 8. 20 January 2005

  • Bernesson S, Nilsson D, Hansson PA (2004) A limited LCA comparing large- and small-scale production of rape methyl ester (RME) under Swedish conditions. Biomass Bioenerg 26:545–559

    Article  CAS  Google Scholar 

  • Cramer J et al (2007) Testing framework for sustainable biomass. Final report from the project group ‘Sustainable production of biomass’. Creative Energy

  • Ciani R, Esposito A (2005) Perfil descriptivo de la cadena de oleaginosos. SAGPyA. Available at: http://www.sagpya.gov.ar. Accessed 15 December 2006 (in Spanish)

  • CONCAWE-EUCAR-JRC (2007) Well-to-wheels analysis of future automotive fuels and powertrains in the European context. Well-to-wheels report, version 2c. Available at: http://ies.jrc.cec.eu.int/wtw.html. Accessed 10 March 2008

  • Dalgaard R, Schmidt J, Halberg N, Christensen P, Thrane M, Pengue WA (2007) LCA of soybean meal. Int J Life Cycle Assess 13(3):240–254

    Article  Google Scholar 

  • Díaz Zorita, M (2003) Nuevas estrategias en el manejo de la soja. Fertilización en soja en Argentina. En: Simposio internacional sobre soja. XI Congreso Nacional de AAPRESID. Tomo 2. pp 113–127

  • Donato L, Moltoni L, Hilbert J (2005) La producción de biocombustibles empleando siembra directa en la Argentina: Implicancias económicas y energéticas. Instituto de Ingeniería Rural-INTA (in Spanish)

  • Elsayed MA, Matthews R, Mortimer ND (2003) Carbon and energy balances for a range of biofuels options. Project No. B/B6/00784/REP URN 03/836. Available at: http://www.berr.gov.uk/files/file14925.pdf. Accessed 10 March 2008

  • Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319(5867):1235–1238

    Article  CAS  Google Scholar 

  • Farrell AE, Plevin RJ, Turner BT, Jones AD, O’Hare M, Kammen DM (2006) Ethanol can contribute to energy and environmental goals. Science 311(5781):506–508

    Article  CAS  Google Scholar 

  • Farrell AE, Sperling D (2007a) A low-carbon fuel standard for California, Part 1: technical analysis. University of California

  • Farrell AE, Sperling D (2007b) A low-carbon fuel standard for California, part 2: policy analysis. University of California

  • Food and Agriculture Organization of rhe United Nations (2004) Fertilizer use by crop in Argentina. Land and Plant Nutrition Management Service, Land and Water Development Division, Rome

  • Franco D (2005a) Aceite de soja: Análisis de Cadena Alimentaria. SAGPyA. Available at: http://www.alimentosargentinos.gov.ar. Accessed 15 December 2006 (in Spanish)

  • Franco D (2005b) Logística en la cadena de oleaginosas. SAGPyA, Dirección de Industria Alimentaria. Revista Alimentos Argentinos N° 30, Oct. 2005. Available at: http://www.alimentosargentinos.gov.ar. Accessed 8 December 2006 (in Spanish)

  • Frischknecht R (2005) Ecoinvent data v1.1 (2004): from heterogenous databases to unified and transparent LCI data. Int J Life Cycle Assess 10(1):1–2

    Article  Google Scholar 

  • Frischknecht R, Jungbluth N, Althaus HJ, Doka G, Dones R, Heck T, Hellweg S, Hischier R, Nemecek T, Rebitzer G, Spielmann M (2004) The ecoinvent database: overview and methodological framework. Int J Life Cycle Assess 10(1):3–9

    Article  Google Scholar 

  • Gasparri NI, Grau H, Manghi E (2008) Carbon pools and emissions from deforestation in extra-tropical forests of northern Argentina between 1900 and 2005. Ecosystems 11:1247–1261

    Article  CAS  Google Scholar 

  • Gasparri NI, Manghi E (2004) Estimación de volumen, biomasa y contenido de carbono de las regions forestales argentines. Informe final, Unidad de Manejo del Sistema de Evaluación Forestal, Dirección de bosques, Secretaría de ambiente y desarrollo sustentable, Septiembre 2004 (in Spanish)

  • GM-LBST (2002) GM Well-to-wheel analysis of energy use and greenhouse gas emissions of advanced fuel/vehicle systems: a European study. General Motors, L-B-Systemtechnik

  • Gnansounou E, Dauriat A (2005) Energy balance of bioethanol: a synthesis. Proceedings of the 14th European Biomass Conference & Exhibition, Paris, France, Oct. 2005

  • Gnansounou E, Dauriat A, Panichelli L, Villegas JD (2008) Energy and greenhouse gas balances of biofuels: biases induced by LCA modelling choices. J Sci Ind Res (JSIR) 67:885–897

    CAS  Google Scholar 

  • González N (2007) Fijación de Nitrógeno en soja. Uso de inoculantes. Available at: http://www.planetasoja.com/trabajos/trabajos800.php?id1=3277&id2=3278&idSec=26. Accessed 22 February 2008 (in Spanish)

  • Grau HR, Gasparri NI, Aide TM (2005) Agriculture expansion and deforestation in seasonally dry forests of north-west Argentina. Environ Conserv 32(2):140–148

    Article  Google Scholar 

  • Guinée JB, Heijungs R (2007) Calculating the influence of alternative allocation scenarios in fossil fuel chains. Int J Life Cycle Assess 12(3):173–180

    Article  Google Scholar 

  • Houghton RA (2003) Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000. Tellus 55B(2):378–390

    CAS  Google Scholar 

  • IDIED (2004) Instituto de Investigación en Economía y Dirección para el Desarrollo, Universidad Austral. Indicadores económicos regionales, Septiembre 2004. Available at: http://www.austral.edu.ar/FCE/inst_idied.htm. Accessed 8 December 2006 (in Spanish)

  • ISO (2006a) Norma ISO 14040:2006. Environmental management. Life cycle assessment. Principles and framework

  • ISO (2006b) Norma ISO 14044:2006. Environmental management. Life cycle assessment. Requirements and guidelines

  • Johnston M, Holloway T (2007) A global comparison of national biodiesel production potentials. Environ Sci Technol 41:23

    Article  Google Scholar 

  • Jungbluth N, Faist Emmenegger M, Dinkel F, Stettler O, Doka G, Chudacoff M, Dauriat A, Gnansounou E, Sutter J, Spielmann M, Kljun N, Schleiss K (2007) Life cycle inventories of bioenergy. Data v2.0 (2007), ecoinvent report No. 17, Swiss Center for Life Cycle Inventories, Uster

  • Kløverpris J, Wenzel H, Nielsen PH (2007) Life cycle inventory modelling of land use induced by crop consumption. Part 1: conceptual analysis and methodological proposal. Int J Life Cycle Assess 13(1):13–21

    Article  Google Scholar 

  • Kløverpris J, Wenzel H, Banse M, Milà i Canals L, Reenberg A (2008) Conference and Workshop on Modelling Global Land Use Implications in the Environmental Assessment of Biofuels. Int J Life Cycle Assess 13(3):178–183

    Article  Google Scholar 

  • Márgenes agropecuarios (2006) Costos y márgenes de producción para soja de primera y soja de segunda. Revista Márgenes Agropecuarios, 2/10/06, pp 57–59 (in Spanish)

  • Montenegro C, Strada M, Bono J, Gasparri NI, Manghi E, Parmuchi MG, Brouver M (2005) Estimación de la pérdida de superficie de bosque nativo y tasa de deforestación en el norte de argentina. 3er congreso forestal argentino y latinoamericano 6–9 Septiembre 2005, Corrientes (in Spanish)

  • Nemecek T, Heil A, Huguenin O, Meier S, Erzinger S, Blaser S, Dux D, Zimmermann A (2007) Life Cycle Inventories of Agricultural Production Systems. ecoinvent report No. 15, v2.0. Agroscope FAL Reckenholz and FAT Taenikon, Swiss Centre for Life Cycle Inventories, Dübendorf

  • Paruelo JM, Guerschman JP, Verón SR (2005) Expansión agrícola y cambios en el uso del suelo. CienciaHoy Bs As 15(87):14–23 (in Spanish)

    Google Scholar 

  • Pengue WA (2005) Transgenic crops in Argentina: the ecological and social debt. Bull Sci Technol Soc 25(NA):1–9

    Google Scholar 

  • Pengue WA (2006) Increasing roundup ready soybean export from Argentina. In: Trydeman Knudsen M, Halberg N, Olesen JE, Byrne J, Iyer V, Toly N (eds) Global trends in agriculture and food systems. CEEP Publications, USA

    Google Scholar 

  • Racca R (2002) Fijación biológica del nitrógeno. In: Actas 1er Simposio de Fertilidad de Suelos y Fertilización en Siembra Directa, X Congreso Nacional de AAPRESID, pp 197–208 (in Spanish)

  • Reijnders L, Huijbregts MAJ (2008) Palm oil and the emission of carbon-based greenhouse gases. J Clean Prod 16:477–482

    Article  Google Scholar 

  • RFA (2008) Carbon and sustainability reporting within the renewable transport fuel obligation. Technical Guidance, Office of the Renewable Fuels Agency

  • Righelato R, Spracklen DV (2007) Carbon mitigation by biofuels or by saving and restoring forests. Science 317(5840):902–902

    Article  CAS  Google Scholar 

  • Russi D (2008) An integrated assessment of a large-scale biodiesel production in Italy. Energ Policy 36:1169–1180

    Article  Google Scholar 

  • SAGPyA-IICA (2005) Secretaria de Agricultura, Ganadería, Pesca y Alimentos—Instituto Interamericano de Cooperación para la Agricultura. Perspectivas de los biocombustibles en la Argentina y en Brasil. Documento no. ISBN: 987-9159-07-1

  • SAGPyA (2006a) Estimaciones agrícolas. Available at: http://www.sagpya.gov.ar. Accessed 15 December 2006 (in Spanish)

  • SAGPyA (2006b) Panorama del uso y consumo de fertilizantes en Argentina. Available at: http://www.sagpya.mecon.gov.ar. Accessed 15 December 2006 (in Spanish)

  • SAGPyA (2006c) Evolución de los precios externos de oleaginosos. Available at: http://www.sagpya.mecon.gov.ar. Accessed 15 December 2006 (in Spanish)

  • SAGPyA (2008) Más de 260 millones de dólares en exportaciones de biodiesel durante 2007. Press communication

  • Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu TH (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land use change. Science 319(5867):1238–1240

    Article  CAS  Google Scholar 

  • SERP (Secretaría de Energía de la República Argentina) (2006) Cálculo del factor de emisiones de CO2 de la red argentina de energía eléctrica. Available at: http://energia3.mecon.gov.ar. Accessed 4 October 2007

  • Sheehan J, Duffield J, Shapouri H, Graboski M, Camobrero V (1998) An overview of biodiesel and petroleum diesel life-cycles. National Renewable Energy Laboratory, US Department of Energy

  • Smith EG, Janzen HH, Newlands NK (2007) Energy balances of biodiesel production from soybean and canola in Canada. Can J Plant Sci 87(4):793–801

    Google Scholar 

  • VIEWLS (2005) Environmental and economic performance of biofuels, vo I, main report. VIEWLS Project, SenterNovem

  • Zah R, Böni H, Gauch M, Hischier R, Lehmann M, Wäger P (2007) Ökobilanzierung von Bioenergie: Ökologische Bewertung der Treibstoffnutzung. Schlussbericht, Entwurf Version 1.3.0. EMPA, Abteilung Technologie und Gesellschaft, 2007 (in German)

Download references

Acknowledgements

We kindly acknowledge Luciana Moltoni and Jorge Hilbert from the Institute of Rural Engineering at the National Institute of Agricultural Technology in Argentina (IIR-INTA) for data provision. We are grateful to Andres Leone from the National Biofuels Program at the Secretary of Agriculture, Livestock, Fishery and Food (SAGPyA) in Argentina for his useful comments and Ignacio Gasparri from the University of Tucumán (LIEY-CONICET) for providing data and validating hypotheses on deforestation and land use change emissions. Finally, we are grateful to anonymous reviewers for their useful remarks to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgard Gnansounou.

Additional information

Responsible editor: Robert Anex

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panichelli, L., Dauriat, A. & Gnansounou, E. Life cycle assessment of soybean-based biodiesel in Argentina for export. Int J Life Cycle Assess 14, 144–159 (2009). https://doi.org/10.1007/s11367-008-0050-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-008-0050-8

Keywords

Navigation