Skip to main content

Advertisement

Log in

Restoration impact of an uncontrolled phosphogypsum dump site on the seasonal distribution of abiotic variables, phytoplankton and zooplankton along the near shore of the south-western Mediterranean coast

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

'In connection with the Taparura Project, we studied the distribution of phytoplankton and zooplankton communities in relation to environmental variables at 18 stations sampled during four coastal cruises conducted between October 2009 and July 2010 on the north coast of Sfax (Tunisia, western Mediterranean Sea). The inshore location was largely dominated by diatoms (66 %) represented essentially by members of the genera Navicula, Grammatophora, and Licmophora. Dinophyceae were numerically the second largest group and showed an enhanced species richness. Cyanobacteriae developed in association with an important proliferation of colonial Trichodesmium erythraeum, contributing 39.4 % of total phytoplankton abundances. The results suggest that phytoplankters are generally adapted to specific environmental conditions. Copepods were the most abundant zooplankton group (82 %) of total zooplankton. A total of 21 copepod species were identified in all stations, with an overwhelming abundance of Oithona similis in autumn and summer, Euterpina acutifrons in winter, and Oncaea conifera in spring. The phosphogypsum restoration had been acutely necessary allowing dominant zooplankton species to exploit a wide range of food resources including phytoplankton and thus improving water quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdennadher M, Hamza A, Fekih W, Hannachi I, Zouari-Belaaj A, Bradai N, Aleya L (2012) Factors determining the dynamics of toxic blooms of Alexandrium minutum during a 10-year study along the shallow southwestern Mediterranean coasts. Estuar Coast Shelf Sci 106:102–111

    Article  Google Scholar 

  • Aktan Y (2010) Large-scale patterns in summer surface water phytoplankton (except picophytoplankton) in the Eastern Mediterranean. Estuar Coast Shelf Sci 91:551–5588

    Article  Google Scholar 

  • Annabi-Trabelsi N, Daly-Yahia MN, Romdhane MS, Ben-Maïz N (2005) Seasonal variability of planktonic copepods in Tunis north lagoon (Tunisia, North Africa). Cahiers de Biol Mar 46:325–333

    Google Scholar 

  • Ben Brahim M, Hamza A, Hannachi I, Rebai A, Jarboui O, Bouain A, Aleya L (2010) Variability in the structure of epiphytic assemblages of Posidonia oceanica in relation to human interferences in the Gulf of Gabes, Tunisia. Mar Environ Res 70:411–421

    Article  CAS  Google Scholar 

  • Ben Ismail S, Sammari C, Gasparini GP, Béranger K, Brahim M, Aleya L (2012) Water masses exchanged through the Channel of Sicily: evidence for the presence of new water masses on the Tunisian side of the Channel. Deep Sea Res I 63:65–81

    Article  Google Scholar 

  • Bourrelly P (1985) Les Algues d’Eau Douce. Initiation à la Systèmatique. Tome II. Les Algues bleues et rouges. Les Euglénieins, Peridiniens et Cryptomonadines. Société Nouvelle des Editions Boubée, 450 pp

  • Boxshall GA, Halsey SH (2003) An introduction to copepod diversity. Tome I. Printed and bound by Henry ling Ltd, the Dorset Press, Dorchester, 421 pp

  • Bustillos-Guzman J, Claustre H, Marty JC (1995) Specific phytoplankton signatures and their relationship to hydrographic conditions in the coastal northwestern Mediterranean Sea. Mar Ecol Prog Ser 124:247–258

    Article  Google Scholar 

  • Calbet A, Garrido S, Saiz E, Alcaraz M, Duarte C (2001) Annual zooplankton succession in coastal NW Mediterranean waters: the importance of the smaller size fractions. J Plankton Res 23:319–331

    Article  Google Scholar 

  • Chen YW, Qin BQ, Gao XY (2001) Prediction of blue-green algae bloom using stepwise multiple regression between algae and related environmental factors in Meiliang Bay, Lake Taihu. J Lake Sci 13:63–71

    CAS  Google Scholar 

  • Claustre H, Kerhervé P, Marty JC, Prieur L, Hecq JH (1994) Phytoplankton distribution associated with a geostrophic front: ecological and biogeochemical implications. J Mar Res 52:711–742

    Article  Google Scholar 

  • Costanzo G, Campolmi M, Zagami G (2000) Stephos marsalensis new species (Copepoda, Calanoida, Stephidae) from coastal waters of Sicily, Italy. J Plankton Res 22:2007–2014

    Article  Google Scholar 

  • Daly-Yahia MN, Souissi S, Daly-Yahia-Kefi O (2004) Spatial and temporal structure of planktonic copepods in the Bay of Tunis (southwestern Mediterranean Sea). Zool Stud 43:366–375

    Google Scholar 

  • Dhib A, Frossard V, Turki S, Aleya L (2012) Dynamics of harmful dinoflagellates driven by temperature and salinity in a northeastern Mediterranean lagoon. Environ Monit Assess. doi:10.1007/s10661-012-2797-4

  • Dolédec S, Chessel D (1989) Rythmes saisonniers et composantes stationnelles en milieu aquatiqueII. Prise en compte et élimination d’effets dans un tableau faunistique. Acta Oecol Oecol Gen 10:207–332

    Google Scholar 

  • Drira Z, Hamza A, Bel Hassen M, Ayadi H, Bouain A, Aleya L (2008) Dynamics of dinoflagellates and environmental factors during the summer in the Gulf of Gabes (Tunisia, Eastern Mediterranean Sea). Sci Mar 72:59–71

    Article  Google Scholar 

  • Drira Z, Hamza A, Bel Hassen M, Ayadi H, Bouaïn A, Aleya L (2010) Coupling of phytoplankton community structure to nutrients, ciliates and copepods in the Gulf of Gabes (south Ionian Sea, Tunisia). J Mar Biol Assoc UK 90:1203–1215

    Article  Google Scholar 

  • Frontier S (1973) Etude statistique de la dispersion du zooplancton. J Exp Mar Biol Ecol 12:229–262

    Article  Google Scholar 

  • Gage MA, Gorham E (1985) Alkaline phosphatase activity and cellular phosphorus as an index of the phosphorus status of phytoplankton in Minnesota Lake. Freshw Biol 15:227–233

    Article  CAS  Google Scholar 

  • Gomez F (2003) Checklist of Mediterranean free-living dinoflagellates. Bot Mar 46:215–242

    Article  Google Scholar 

  • Hamza-Chaffai A, Amiard-Triquet C, El Abed A (1997) Metallothionein-like protein, is it an efficient biomarker of metal contamination? A case study based on fish from the Tunisian coast. Arch Environ Contam Toxicol 33:53–62

    Article  CAS  Google Scholar 

  • Humphrey GF, Kerr JD (1969) Seasonal variations in the Indian Ocean along 110 E. III. Chlorophylls a and c. Aust J Mar Freshw Res 20:55–64

    Article  CAS  Google Scholar 

  • Ignatiades L, Gottis-Skeretas O, Pagou K, Krasakopoulou E (2009) Diversification of phytoplankton community structure and related parameters along a large-scale longitudinal eastwest transect of the Mediterranean Sea. J Plankton Res 4:411–428

    Article  Google Scholar 

  • Kchaou N, Elloumi J, Drira Z, Hamza A, Ayadi H, Bouain A, Aleya L (2009) Distribution of ciliates in relation to environmental factors along the coastline of the Gulf of Gabes, Tunisia. Estuar Coast Shelf Sci 83:414–424

    Article  CAS  Google Scholar 

  • Kustka AB, Sanudo-Wilhelmy SA, Carpenter EJ, Capone D, Burns J, Sunda WG (2003) Iron requirements for dinitrogen- and ammonium-supported growth in cultures of Trichodesmium (IMS101): comparison with nitrogen fixation rates and iron: carbon ratios of field populations. Limnol Oceanogr 48:1869–1884

    Article  CAS  Google Scholar 

  • Lam-Hoai T, Rougier C (2001) Zooplankton assemblages and biomass during a 4-period survey in a Northern Mediterranean coastal lagoon. Water Res 35:271–283

    Article  CAS  Google Scholar 

  • Lampitt RS, Gamble JC (1982) Diet and respiration of the small planktonic marine copepod Oithona nana. Mar Biol 66:185–190

    Article  Google Scholar 

  • Larsson U, Hajdu S, Walve J, Elmgren R (2001) Baltic Sea nitrogen fixation estimated from the summer increase in upper mixed layer total nitrogen. Limnol Oceanogr 46:811–820

    Article  CAS  Google Scholar 

  • Louati A, Elleuch B, Kallel A, Saliot A, Dagaut J, Oudot J (2001) Hydrocarbon contamination of coastal sediments from the Sfax area (Tunisia), Mediterranean Sea. Mar Pollut Bull 42:445–452

    Article  CAS  Google Scholar 

  • Martin JH (1970) Phytoplankton–zooplankton relationships in Narragansett Bay IV. The seasonal importance of grazing. Limnol Oceanogr 15:413–418

    Article  Google Scholar 

  • Marty JC, Chiaverini J, Pizay MD, Avril B (2002) Seasonal and inter-annual dynamics of nutrients and phytoplankton pigments in the western Mediterranean Sea at the DYFAMED time-series station (1991–1999). Deep-Sea Res 49:1965–1985

    Article  CAS  Google Scholar 

  • Moncheva S, Gotsis-Skretas O, Pagou K, Krasteva A (2001) Phytoplankton blooms in Black Sea and Mediterranean coastal ecosystems subjected to anthropogenic eutrophication: similarities and differences. Estuarine Coastal Shelf Sci 53:281–295

    Article  CAS  Google Scholar 

  • Mur LR, Skulberg OM, Utkilen H (1999) Cyanobacteria in the environment. In: Chorus I, Bartram J (eds). Toxic cyanobacteria in water: a guide to their public health consequences. Routledge, New Fetter Lane, London

  • Nausch M, Nausch G, Wasmund N, Nagel K (2008) Phosphorus pool variations and their relation to cyanobacteria development in the Baltic Sea: a three-year study. J Mar Syst 71:99–111

    Article  Google Scholar 

  • Parck JS (1979) Field bioassays on shellfish to assess environmental pollution levels of the Masan Bay. Journal of the Oceanological Society of Korea 14:15–25

    Google Scholar 

  • Polat S, Isik O (2002) Phytoplankton distribution, diversity and nutrients at the north-eastern Mediterranean coast of Turkey (Karatas¸ Adana). Turk J Bot 26:77–86

    Google Scholar 

  • Pujo-Pay M, Conan P, Oriol L, Cornet-Barthaux V, Falco C, Ghiglione J-F, Goyet C, Moutin T, Prieur L (2011) Integrated survey of elemental stoichiometry (C, N, P) from the western to eastern Mediterranean Sea. Biogeosciences 8:883–899

    Article  CAS  Google Scholar 

  • Rekik A, Denis, M, Aleya L, Maalej, S, Ayadi H (2012) Spring plankton community structure and distribution in the north and south coasts of Sfax (Tunisia) after north coast restoration. Mar Poll Bull (in press)

  • Rekik A, Drira Z, Guermazi W, Elloumi J, Maalej S, Aleya L, Ayadi H (2012) Impacts of an uncontrolled phosphogypsum dumpsite on summer distribution of phytoplankton, copepods and ciliates in relation to abiotic variables along the near-shore of the southwestern Mediterranean coast. Mar Pollut Bull 64:336–346

    Article  CAS  Google Scholar 

  • Reynolds CS (1997) Vegetation processes in the Pelagic: a model for ecosystem theory. (Excellence in ecology 9). Ecology Institute, Oldendorf, 371 pp

  • Richard S, Jamet J (2001) An unusual distribution of Oithona nana Giesbrecht (1892) (Crustacea: Cyclopoida) in a bay: the case of Toulon Bay (France, Mediterranean Sea). J Coast Res 17:957–963

    Google Scholar 

  • Roe KL, Barbeau K, Mann EL, Haygood MG (2012) Acquisition of iron by Trichodesmium and associated bacteria in culture. Environ Microbiol 14:1681–1695

    Article  CAS  Google Scholar 

  • Rose M (1933) Copépodes pélagiques. Faune de la France, 26. Paris: Lechevalier, 368 pp

  • Rubin M, Berman-Frank I, Shaked Y (2011) Dust and mineral iron utilization by the marine diazotroph Trichodesmium. Nat Geosci 4:529–534

    Article  CAS  Google Scholar 

  • Rueter JG, Hutchins DA, Smith RW, Unsworth NL (1992) Iron nutrition of Trichodesmium. In: Marine pelagic cyanobacteria: Trichodesmium and other diazotrophs. Carpenter EJ, Capone DG, and Rueter JG (eds). Norwell, MA, USA: Kluwer Academic Publishers, pp. 289–306

  • SCOR-UNESCO (1966) Determination of photosynthetic pigments in seawater. UNESCO, Paris

    Google Scholar 

  • Shannon CE, Weaver G (1949) The mathematical theory of communication. University of Illinois Press, Urbana, Chicago, IL, 118 pp

    Google Scholar 

  • Soler TE, Del Rio JG, Raduan MA, Blanco C (1985) The seasonal distribution of the copepods and cladocerans in the Cullera Bay. East Spain Int Rep 29:235–237

    Google Scholar 

  • Sommer U, Frank Sommer F (2006) Cladocerans versus copepods: the cause of contrasting top-down controls on freshwater and marine phytoplankton. Oecologia 147:183–194

    Article  Google Scholar 

  • Tan X, Kong FX, Zeng QF (2009) Seasonal variation of Microcystis in Lake Taihu and its relationships with environmental factors. J Environ Sci 21:892–899

    Article  CAS  Google Scholar 

  • Tayibi H, Choura M, Lopez FA, Alguacil FJ, Lopez-Delgado A (2009) Environmental impact and management of phosphogypsum. J Environ Manag 90:2377–2386

    Article  CAS  Google Scholar 

  • Thingstad F, Zweifel UL, Rassoulzadegan F (1998) Limitation of heterotrophic bacteria and phytoplankton in the northwest Mediterranean. Limnol Oceanogr 43:33–44

    Article  Google Scholar 

  • Thompson PA, Oh HM, Rhee GY (1994) Storage of phosphorus n nitrogen-fixing Anabaena flos-aquae (Cyanophyceae). J Phycol 30:267–273

    Article  CAS  Google Scholar 

  • Tranter DJ, Kerr JD (1969) Seasonal variations in the Indian Ocean along 110 E V. Zooplankton biomass. Aust J Mar Freshw Res 20:77–84

    Article  Google Scholar 

  • Tregouboff G, Rose M (1978) Manuel de Planctologie de la Méditerranée. CNRS, Tome II. Paris, p 207

    Google Scholar 

  • Utermöhl H (1958) Zurvervolkommungder quantitativen phytoplankton 1 Methodik. Mitteilungen Internationale Vereinigung fur Theoretische und Angewandte. Limnol 9:1–38

    Google Scholar 

  • Wang XL, Lu YL, He GZ, Han JY, Wang TY (2007) Exploration of relationships between phytoplankton biomass and related environmental variables using multivariate statistic analysis in a eutrophic shallow lake: a 5-year study. J Environ Sci 19:920–927

    Article  CAS  Google Scholar 

  • Weingartner T, Aagaard K, Woodgate R, Danielson S, Sasaki Y, Cavalieri D (2005) Circulation on the north central Chukchi Sea shelf. Deep-Sea Res II 52:3150–3174

    Google Scholar 

  • Ye Y, Christophe Völker C, Bracher A, Taylor B, Dieter A, Wolf-Gladrow DA (2012) Environmental controls on N2 fixation by Trichodesmium in the tropical eastern North Atlantic Ocean—a model-based study. Deep-Sea Res I. doi:10.1016/j.dsr.2012.01.004

Download references

Acknowledgments

This work was supported by the Taparura Project conducted in the Biodiversity and Aquatic Ecosystems UR/05ES05 research unit at the University of Sfax and at the Chrono-environnement Laboratory: CNRS 6249, Besançon, France. It is a part of the PhD study by Amira Rekik. We thank the staff and the director of the Taparura Project. We are grateful for the constructive criticism of two anonymous reviewers, which helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lotfi Aleya.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rekik, A., Maalej, S., Ayadi, H. et al. Restoration impact of an uncontrolled phosphogypsum dump site on the seasonal distribution of abiotic variables, phytoplankton and zooplankton along the near shore of the south-western Mediterranean coast. Environ Sci Pollut Res 20, 3718–3734 (2013). https://doi.org/10.1007/s11356-012-1297-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-012-1297-y

Keywords

Navigation