Skip to main content

Advertisement

Log in

Anomalous low tropospheric column ozone over Eastern India during the severe drought event of monsoon 2002: a case study

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Background, aim, and scope

The present study is an attempt to examine some of the probable causes of the unusually low tropospheric column ozone observed over eastern India during the exceptional drought event in July 2002.

Method

We examined horizontal wind and omega (vertical velocity) anomalies over the Indian region to understand the large-scale dynamical processes which prevailed in July 2002. We also examined anomalies in tropospheric carbon monoxide (CO), an important ozone precursor, and observed low CO mixing ratio in the free troposphere in 2002 over eastern India.

Results and discussion

It was found that instead of a normal large-scale ascent, the air was descending in the middle and lower troposphere over a vast part of India. This configuration was apparently responsible for the less convective upwelling of precursors and likely caused less photochemical ozone formation in the free troposphere over eastern India in July 2002.

Conclusion

The insight gained from this case study will hopefully provide a better understanding of the process controlling the distribution of the tropospheric ozone over the Indian region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ancellet G, Leclair de Bellevue J, Mari C, Nedelec P, Kukui A, Borbon A, Perros P (2009) Effects of regional-scale and convective transports on tropospheric ozone chemistry revealed by aircraft observations during the wet season of the AMMA campaign. Atmos Chem Phys 9:383–411

    Article  CAS  Google Scholar 

  • Antón M, Koukouli ME, Kroon M, McPeters RD, Labow GJ, Balis D, Serrano A (2010) Global validation of empirically corrected EP-total ozone mapping spectrometer (TOMS) total ozone columns using Brewer and Dobson ground-based measurements. J Geophys Res 115:D19305. doi:10.1029/2010JD014178

    Article  Google Scholar 

  • Berntsen TK, Isaksen IA (1999) Effects of lightning and convection on changes in tropospheric ozone due to NO x emissions from aircraft. Tellus Ser B 51(4):766–788

    Article  Google Scholar 

  • Chandra S, Ziemke JR, Schoeber MR, Froidevaux L, Read WG, Levelt PF, Bhartia PK (2007) Effects of the 2004 El Niño on tropospheric ozone and water vapor. Geophys Res Lett 34:L06802. doi:10.1029/2006GL028779

    Article  Google Scholar 

  • Chatfield RB, Delany AC (1990) Convection links biomass burning to increased tropical ozone: however, models will tend to over-predict O3. J Geophys Res 95:18473–18488

    Article  CAS  Google Scholar 

  • Creilson JK, Fishman J, Wozniak AE (2003) Intercontinental transport of tropospheric ozone: a study of its seasonal variability across the North Atlantic utilizing tropospheric ozone residuals and its relationship to the North Atlantic oscillation. Atmos Chem Phys 3:2053–2066

    Article  CAS  Google Scholar 

  • Deeter MN et al (2003) Operational carbon monoxide retrieval algorithm and selected results for the MOPITT instrument. J Geophys Res 108(D14):4399. doi:10.1029/2002JD003186

    Article  Google Scholar 

  • Deeter MN, Edwards DP, Gille JC, Drummond JR (2009) CO retrievals based on MOPITT near-infrared observations. J Geophys Res 114:D04303. doi:10.1029/2008JD010872

    Article  Google Scholar 

  • Deeter MN, Edwards DP, Gille JC, Emmons LK, Francis G, Ho SP, Mao D, Masters D, Worden H, Drummond JR, Novelli PC (2010) The MOPITT version 4 CO product: algorithm enhancements, validation and long-term stability. J Geophys Res 115:D07036. doi:10.1029/2009JD013005

    Article  Google Scholar 

  • Doherty RM, Stevenson DS, Johnson CE, Collins WJ, Sanderson MG (2006) Tropospheric ozone and El Niño–Southern oscillation: influence of atmospheric dynamics, biomass burning emissions, and future climate change. J Geophys Res 111:D19304. doi:10.1029/2005JD006849

    Article  Google Scholar 

  • Drummond JR, Zou J, Nichitiu F, Kar J, Deschambaut R, Hackett J (2010) A review of 9-year performance and operation of the MOPITT instrument. Adv Space Res 45:760–774. doi:10.1016/j.asr.2009.11.019,2010

    Article  CAS  Google Scholar 

  • Edwards DP et al (2003) Tropospheric ozone over the tropical Atlantic: a satellite perspective. J Geophys Res 108(D8):4237. doi:10.1029/2002JD002927

    Article  Google Scholar 

  • Eremenko M, Dufour G, Foret G, Keim C, Orphal J, Beekmann M, Bergametti G, Flaud JM (2008) Tropospheric ozone distributions over Europe during the heat wave in July 2007 observed from infrared nadir spectra recorded by IASI. Geophys Res Lett 35:L18805. doi:10.1029/2008GL034803

    Article  Google Scholar 

  • Fishman J, Balok AE (1999) Calculation of daily tropospheric ozone residuals using TOMS and empirically improved SBUV measurements: application to an ozone pollution episode over the eastern United States. J Geophys Res 104:30319–30340

    Article  CAS  Google Scholar 

  • Fishman J, Solomon S, Crutzen PJ (1979) Observational and theoretical evidence in support of a significant in-situ photochemical source of tropospheric ozone. Tellus 31:432–446

    Article  CAS  Google Scholar 

  • Fishman J, Watson CE, Larsen JC, Logan JA (1990) Distribution of tropospheric ozone determined from satellite data. J Geophys Res 95:3599–3617

    Article  Google Scholar 

  • Fishman J, Brackett VG, Browell EV, Grant WB (1996) Tropospheric ozone derived from TOMS/SBUV measurements during TRACE-A. J Geophys Res 101(D19):24069–24082

    Article  CAS  Google Scholar 

  • Fishman J, Wozniak AE, Creilson JK (2003) Global distribution of tropospheric ozone from satellite measurements using the empirically corrected tropospheric ozone residual technique: identification of the regional aspects of air pollution. Atmos Chem Phys 3:893–907. doi:10.5194/acp-3-893-2003

    Article  CAS  Google Scholar 

  • Gadgil S, Vinayachandran PN, Francis PA (2003) Droughts of the Indian summer monsoon: role of clouds over the Indian Ocean. Curr Sci 85(12):1713–1719

    Google Scholar 

  • Ghude SD, Fadnavis S, Beig G, Polade SD, van der A RJ (2008) Detection of surface emission hot spots, trends, and seasonal cycle from satellite-retrieved NO2 over India. J Geophys Res 113:D20305. doi:10.1029/2007JD009615

    Article  Google Scholar 

  • Ghude SD, van der A RJ, Beig G, Fadnavis S, Polade SD (2009) Satellite derived trends in NO2 over the major global hotspot regions during the past decade and their inter-comparison. Environ Pollut 157(6):1879–1885

    Article  Google Scholar 

  • Ghude SD, Kulkarni Pavan S, Beig G, Jain SL, Arya BC (2010) Global distribution of tropospheric ozone and its precursors: a view from the space. Int J Remote Sens 31(2):485–495

    Article  Google Scholar 

  • Hudson RD, Kim JH, Thompson AM (1995) On the derivation of tropospheric column from radiances measured by the total ozone mapping spectrometer. J Geophys Res 100:11137–11145

    Article  Google Scholar 

  • Kar J et al (2004) Evidence of vertical transport of carbon monoxide from measurements of pollution in the troposphere (MOPITT). Geophys Res Lett 31:L23105. doi:10.1029/2004GL021128

    Article  Google Scholar 

  • Kar J et al (2008) Measurement of low-altitude CO over the Indian subcontinent by MOPITT. J Geophys Res 113:D16307. doi:10.1029/2007JD009362

    Article  Google Scholar 

  • Kar J, Fishman J, Creilson JK, Richter A, Ziemke J, Chandra S (2010) Are there urban signatures in the tropospheric ozone column products derived from satellite measurements? Atmos Chem Phys 10:5213–5222. doi:10.5194/acp-10-5213-2010

    Article  CAS  Google Scholar 

  • Kim JH, Newchurch MJ, Han K (2001) Distribution of tropical tropospheric ozone determined by the scan-angle method applied to TOMS measurement. J Atmos Sci 58:2699–2708

    Article  Google Scholar 

  • Klenk KF, Bhartia PK, Fleig AJ, Kaveeshwar VG, McPeters RD, Smith PM (1982) Total ozone determination from the Backscatter UV Experiment (BUV). J Appl Meteorol 21:1672–1684

    Article  CAS  Google Scholar 

  • Kley D et al (1996) Observations of near-zero ozone concentrations over the convective Pacific: effects on air chemistry. Science 274:230–232

    Article  CAS  Google Scholar 

  • Lawrence MG, Lelieveld J (2010) Atmospheric pollutant outflow from southern Asia: a review. Atmos Chem Phys Discuss 10:9463–9646

    Article  Google Scholar 

  • Martin RV et al (2002a) Interpretation of TOMS observations of tropical tropospheric ozone with a global model and in situ observations. J Geophys Res 107(D18):4351. doi:10.1029/2001JD001480

    Article  Google Scholar 

  • McPeters R, Taylor S, Jaross G et al. (2007) Empirically corrected TOMS earth probe dataset. http://jwocky.gsfc.nasa.gov/news/Corrected_EP_TOMS_README.pdf

  • Park M, Randel WJ, Gettelman A, Massie ST, Jiang JH (2007) Transport above the Asian summer monsoon anticyclone inferred from Aura Microwave Limb Sounder tracers. J Geophys Res 112:D16309. doi:10.1029/2006JD008294

    Article  Google Scholar 

  • Park M, Randel WJ, Emmons LK, Livesey NJ (2009) Transport pathways of carbon monoxide in the Asian summer monsoon diagnosed from Model of Ozone and Related Tracers (MOZART). J Geophys Res 114:D08303. doi:10.1029/2008JD010621

    Article  Google Scholar 

  • Patra PK, Behera SK, Herman JR, Maksyutov S, Akimoto H, Yamagata T (2005) The Indian summer monsoon rainfall: interplay of coupled dynamics, radiation and cloud microphysics. Atmos Chem Phys 5:2181–2188

    Article  CAS  Google Scholar 

  • Randel WJ et al (2010) Asian monsoon transport of pollution to the stratosphere. Science 328(5978):611–613. doi:10.1126/science.1182274

    Article  CAS  Google Scholar 

  • Sikka DR (2003) Evaluation of monitoring and forecasting a summer monsoon over India and a review of monsoon drought of 2002. Proc Indian Natl Sci Acad Earth Planet Sci 69:479–504

    Google Scholar 

  • Shim C, Li Q, Luo M, Kulawik S, Worden H, Worden J, Eldering A, Diskin G, Sachse G, Weinheimer A, Knapp D, Montzca D, Campos T (2009) Satellite observations of Mexico City pollution outflow from the tropospheric emissions spectrometer (TES). Atmos Environ 43:1540–1547

    Article  CAS  Google Scholar 

  • Srivastava AK, Guhathakurta P, Rajeevan M, Dikshit SK, Kshirsagar SR (2007) Did unusual warming over the mid and higher latitudes play some role in causing the unprecedented failure of the southwest monsoon during July 2002? Meteorol Atmos Phys 96(3–4):193–201

    Article  Google Scholar 

  • Thompson AM, Tao WK, Pickering KE, Scala JR, Simpson J (1997) Tropical deep convection and ozone formation. Bull Am Meteorol Soc 78(6):1043–1054

    Article  Google Scholar 

  • Thompson AM, Witte JC, Hudson RD, Guo H, Herman JR, Fujiwara M (2001) Tropical tropospheric ozone and biomass burning. Science 291:2128–2132

    Article  CAS  Google Scholar 

  • Thompson AM et al (2003) Southern hemisphere additional ozonesondes (SHADOZ) 1998–2000 tropical ozone climatology: 1. Comparison with total ozone mapping spectrometer (TOMS) and ground-based measurements. J Geophys Res 108(D2):8238. doi:10.1029/2001JD000967

    Article  Google Scholar 

  • Tian W, Chipperfield M, Huang Q (2008) Effects of the Tibetean Plateau on total column ozone distribution. Tellus Ser B 60:622–235

    Article  Google Scholar 

  • Ziemke JR et al (2006) Tropospheric ozone determined from Aura OMI and MLS: evaluation of measurements and comparison with the global modeling initiative’s chemical transport model. J Geophys Res 111:D19303. doi:10.1029/2006JD007089

    Article  Google Scholar 

Download references

Acknowledgment

The authors are thankful to Prof. B.N. Goswami, Director, IITM, for encouragement during the progress of the work. MOPITT CO data were obtained from the NASA Langley Research Center Atmospheric Science Data Center. One of the authors (PSK) is financed through the “SPATRAM-MIGE Polar Project,” funded by the Portuguese Science Foundation—FCT. We thank to National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP-NCAR) reanalysis (http://www.cdc.noaa.gov/) for providing wind reanalysis data. The TRMM 3b42 data products used in this study were acquired using the GES-DISC Interactive Online Visualization and analysis Infrastructure (Giovanni) as part of the NASA's Goddard Earth Sciences (GES) Data and Information Services Center (DISC). We acknowledge the atmospheric science data center, NASA, for providing TES data and we are grateful to NASA (Moderate Resolution Imaging Spectroradiometer, http://modis.gsfc.nasa.gov/) for supplying MODIS water vapor products.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin D. Ghude.

Additional information

Responsible editor: Euripides Stephanou

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghude, S.D., Kulkarni, S.H., Kulkarni, P.S. et al. Anomalous low tropospheric column ozone over Eastern India during the severe drought event of monsoon 2002: a case study. Environ Sci Pollut Res 18, 1442–1455 (2011). https://doi.org/10.1007/s11356-011-0506-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-011-0506-4

Keywords

Navigation