Skip to main content
Log in

Proton NMR quantitative profiling for quality assessment of greenhouse-grown tomato fruit

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Tomato is an essential crop in terms of economic importance and nutritional quality. In France, the third most important region for tomato (Solanum lycopersicum L.) production is Aquitaine where the major part of production is now grown soilless under greenhouse conditions with harvest from March to November. Tomato fruit quality at harvest is a direct function of its metabolite content at that time. The aim of this work was to use a global approach to characterize changes in the fruit organoleptic quality at harvest under commercial culture conditions during an entire season for two varieties and two different fertilization practices (with or without recycling of the nutrient solution) for one variety. Absolute quantification data of 32 major compounds in fruit without seeds were obtained through untargeted (proton nuclear magnetic resonance, 1H-NMR) quantitative profiling. These data were complemented by colorimetric analysis of ascorbate and total phenolics. They were analyzed with chemometric approaches. Principal component analysis (PCA) or partial least square analyses (PLS) revealed more discriminant metabolites for season than for variety and showed that nutrient solution recycling had very little effect on fruit composition. These tendencies were confirmed with univariate analyses. 1H-NMR profiling complemented with colorimetric analyses therefore provided a diagnostic tool to follow the changes in organoleptic and nutritional quality of tomato. In addition the quantitative information generated will help to increase our knowledge on the mechanisms of plant response to environmental modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AEAC:

Ascorbic acid equivalent antioxidant capacity

DW:

Dry weight

EC:

Electroconductivity

HCA:

Hierarchical clustering analysis

NMR:

Nuclear magnetic resonance

PCA:

Principal component analysis

PLS:

Partial least square regression

TSP:

(Trimethylsilyl)propionic-2,2,3,3-d4 acid sodium salt

References

  • Agius, F., Gonzalez-Lamothe, R., Caballero, J. L., Munoz-Blanco, J., Botella, M. A., & Valpuesta, V. (2003). Engineering increased vitamin C levels in plants by overexpression of a d-galacturonic acid reductase. Nature Biotechnology, 21, 177–181. doi:10.1038/nbt777.

    Article  PubMed  CAS  Google Scholar 

  • Akoka, S., Barantin, L., & Trierweiler, M. (1999). Concentration measurement by proton NMR using the ERETIC method. Analytical Chemistry, 71, 2554–2557. doi:10.1021/ac981422i.

    Article  CAS  Google Scholar 

  • Alhagdow, M., Mounet, F., Gilbert, L., et al. (2007). Silencing of the mitochondrial ascorbate synthesizing enzyme l-galactono-1, 4-lactone dehydrogenase affects plant and fruit development in tomato (1 w OA). Plant Physiology, 145, 1408–1422. doi:10.1104/pp.107.106500.

    Article  PubMed  CAS  Google Scholar 

  • Anza, M., Riga, P., & Garbisu, C. (2006). Effects of variety and growth season on the organoleptic and nutritional quality of hydroponically grown tomato. Journal of Food Quality, 29, 16–37. doi:10.1111/j.1745-4557.2006.00053.x.

    Article  CAS  Google Scholar 

  • Bai, Y. L., & Lindhout, P. (2007). Domestication and breeding of tomatoes: What have we gained and what can we gain in the future? Annals of Botany, 100, 1085–1094. doi:10.1093/aob/mcm150.

    Article  PubMed  Google Scholar 

  • Baldet, P., Devaux, C., Chevalier, C., Brouquisse, R., Just, D., & Raymond, P. (2002). Contrasted responses to carbohydrate limitation in tomato fruit at two stages of development. Plant, Cell & Environment, 25, 1639–1649. doi:10.1046/j.1365-3040.2002.00941.x.

    Article  CAS  Google Scholar 

  • Bergqvist, J., Dokoozlian, N., & Ebisuda, N. (2001). Sunlight exposure and temperature effects on berry growth and composition of Cabernet Sauvignon and Grenache in the central San Joaquin Valley of California. American Journal of Enology and Viticulture, 52, 1–7. http://www.ajevonline.org/cgi/content/abstract/52/1/1.

  • Boggio, S. B., Palatnik, J. F., Heldt, H. W., & Valle, E. M. (2000). Changes in amino acid composition and nitrogen metabolizing enzymes in ripening fruits of Lycopersicon esculentum Mill. Plant Science, 159, 125–133. doi:10.1016/S0168-9452(00)00342-3.

    Article  PubMed  CAS  Google Scholar 

  • Bouche, N., & Fromm, H. (2004). GABA in plants: Just a metabolite? Trends in Plant Science, 9, 110–115. doi:10.1016/j.tplants.2004.01.006.

    Article  PubMed  CAS  Google Scholar 

  • Capanoglu, E., Beekwilder, J., Boyacioglu, D., Hall, R. D., & De Vos, R. (2008). Changes in antioxidant and metabolite profiles during production of tomato paste. Journal of Agricultural and Food Chemistry, 56, 964–973. doi:10.1021/jf072990e.

    Article  PubMed  CAS  Google Scholar 

  • Carrari, F., Baxter, C. J., Usadel, B., et al. (2006). Integrated analysis of metabolites and transcript levels reveals the metabolic shifts that underlie tomato fruit development and highlight regulatory aspects of metabolic network behavior. Plant Physiology, 142, 1380–1396. doi:10.1104/pp.106.088534.

    Article  PubMed  CAS  Google Scholar 

  • Davies, J. N., & Hobson, G. E. (1981). The constituents of tomato fruit—the influence of environment, nutrition, and genotype. CRC Critical Reviews in Food Science and Nutrition, 15, 205–280.

    Article  PubMed  CAS  Google Scholar 

  • Dumas, Y., Dadomo, M., Lucca, G. D., & Grolier, P. (2003). Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. Journal of the Science of Food and Agriculture, 83, 369–382. doi:10.1002/jsfa.1370.

    Article  CAS  Google Scholar 

  • Fait, A., Fromm, H., Walter, D., Galili, G., & Fernie, A. R. (2008). Highway or byway: The metabolic role of the GABA shunt in plants. Trends in Plant Science, 13, 14–19. doi:10.1016/j.tplants.2007.10.005.

    Article  PubMed  CAS  Google Scholar 

  • Fan, T. W. M. (1996). Metabolite profiling by one- and two-dimensional NMR analysis of complex mixtures. Progress in Nuclear Magnetic Resonance Spectroscopy, 28, 161–219. doi:10.1016/0079-6565(95)01017-3.

    CAS  Google Scholar 

  • Fernie, A. R., Trethewey, R. N., Krotzky, A. J., & Willmitzer, L. (2004). Innovation—metabolite profiling: From diagnostics to systems biology. Nature Reviews Molecular Cell Biology, 5, 763–769. doi:10.1038/nrm1451.

    Article  PubMed  CAS  Google Scholar 

  • Gautier, H., Diakou-Verdin, V., Benard, C., et al. (2008). How does tomato quality (sugar, acid, and nutritional quality) vary with ripening stage, temperature, and irradiance? Journal of Agricultural and Food Chemistry, 56, 1241–1250. doi:10.1021/jf072196t.

    Article  PubMed  CAS  Google Scholar 

  • Giliberto, L., Perrotta, G., Pallara, P., et al. (2005). Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit antioxidant content. Plant Physiology, 137, 199–208. doi:10.1104/pp.104.051987.

    Article  PubMed  CAS  Google Scholar 

  • Guy, C., Kaplan, F., Kopka, J., Selbig, J., & Hincha, D. K. (2008). Metabolomics of temperature stress. Physiologia Plantarum, 132, 220–235.

    PubMed  CAS  Google Scholar 

  • Hao, X., & Papadopoulos, A. P. (2002). Growth, photosynthesis and productivity of greenhouse tomato cultivated in open or closed rockwool systems. Canadian Journal of Plant Science, 82, 771–780. http://pubs.nrc-cnrc.gc.ca/aic-journals/oct02.html.

  • Imeh, U., & Khokhar, S. (2002). Distribution of conjugated and free phenols in fruits: Antioxidant activity and cultivar variations. Journal of Agricultural and Food Chemistry, 20, 6301–6306. doi:10.1021/jf020342j.

    Article  CAS  Google Scholar 

  • Inoue, K., Shirai, T., Ochiai, H., et al. (2003). Blood-pressure-lowering effect of a novel fermented milk containing gamma-aminobutyric acid (GABA) in mild hypertensives. European Journal of Clinical Nutrition, 57, 490–495. doi:10.1038/sj.ejcn.1601555.

    Article  PubMed  CAS  Google Scholar 

  • Jahangir, M., Kim, H. K., Choi, Y. H., & Verpoorte, R. (2008). Metabolomic response of Brassica rapa submitted to pre-harvest bacterial contamination. Food Chemistry, 107, 362–368. doi:10.1016/j.foodchem.2007.08.034.

    Article  CAS  Google Scholar 

  • Johnson, H. E., Broadhurst, D., Goodacre, R., & Smith, A. R. (2003). Metabolic fingerprinting of salt-stressed tomatoes. Phytochemistry, 62, 919–928. doi:10.1016/S0031-9422(02)00722-7.

    Article  PubMed  CAS  Google Scholar 

  • Kampfenkel, K., van Montagu, M., & Inze, D. (1995). Extraction and determination of ascorbate and dehydroascorbate from plant tissue. Analytical Biochemistry, 225, 165–167. doi:10.1006/abio.1995.1127.

    Article  PubMed  CAS  Google Scholar 

  • Kavanaugh, C. J., Trumbo, P. R., & Ellwood, K. C. (2007). The US food and drug administration’s evidence-based review for qualified health claims: Tomatoes, lycopene, and cancer. Journal of the National Cancer Institute, 99, 1074–1085. doi:10.1093/jnci/djm037.

    Article  PubMed  CAS  Google Scholar 

  • Kemsley, E. K. (1998). Discriminant analysis and class modelling of spectroscopic data. Chichester, UK: Wiley.

    Google Scholar 

  • Krapp, A., & Stitt, M. (1995). An evaluation of direct and indirect mechanisms for the “sink-regulation” of photosynthesis in spinach: Changes in gas exchange, carbohydrates, metabolites, enzyme activities and steady-state transcript levels after cold-girdling source leaves. Planta, 195, 313–323. doi:10.1007/BF00202587.

    Article  CAS  Google Scholar 

  • Krauss, S., Schnitzler, W. H., Grassmann, J., & Woitke, M. (2006). The influence of different electrical conductivity values in a simplified recirculating soilless system on inner and outer fruit quality characteristics of tomato. Journal of Agricultural and Food Chemistry, 54, 441–448. doi:10.1021/jf051930a.

    Article  PubMed  CAS  Google Scholar 

  • Krishnan, P., Kruger, N. J., & Ratcliffe, R. G. (2005). Metabolite fingerprinting and profiling in plants using NMR. Journal of Experimental Botany, 56, 255–265. doi:10.1093/jxb/eri010.

    Article  PubMed  CAS  Google Scholar 

  • Le Gall, G., Colquhoun, I. J., Davis, A. L., Collins, G. J., & Verhoeyen, M. E. (2003). Metabolite profiling of tomato (Lycopersicon esculentum) using 1H-NMR spectroscopy as a tool to detect potential unintended effects following a genetic modification. Journal of Agricultural and Food Chemistry, 51, 2447–2456. doi:10.1021/jf0259967.

    Article  PubMed  CAS  Google Scholar 

  • Lindon, J. C., Holmes, E., & Nicholson, J. K. (2001). Pattern recognition methods and applications in biomedical magnetic resonance. Progress in Nuclear Magnetic Resonance Spectroscopy, 39, 1–40. doi:10.1016/S0079-6565(00)00036-4.

    Article  CAS  Google Scholar 

  • Marc, F., Briosbarre, F., Davin, A., Baccaunaud, M., & Ferrand, C. (2004). Evaluation du pouvoir antioxydant (TEAC) d’extraits de végétaux en vue d’utilisations alimentaires. Sciences des Aliments, 24, 399–414. doi:10.3166/sda.24.399-414.

    Article  CAS  Google Scholar 

  • Mattoo, A. K., Sobolev, A. P., Neelam, A., Goyal, R. K., Handa, A. K., & Segre, A. L. (2006). Nuclear magnetic resonance spectroscopy-based metabolite profiling of transgenic tomato fruit engineered to accumulate spermidine and spermine reveals enhanced anabolic and nitrogen–carbon interactions. Plant Physiology, 142, 1759–1770. doi:10.1104/pp.106.084400.

    Article  PubMed  CAS  Google Scholar 

  • Mcneil, S. D., Nuccio, M. L., & Hanson, A. D. (1999). Betaines and related osmoprotectants targets for metabolic engineering of stress resistance. Plant Physiology, 120, 945–949. doi:10.1104/pp.120.4.945.

    Article  PubMed  CAS  Google Scholar 

  • Miller, J. C., & Tanksley, S. D. (1990). RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theoretical and Applied Genetics, 80, 437–448. doi:10.1007/BF00226743.

    CAS  Google Scholar 

  • Moco, S., Capanoglu, E., Tikunov, Y., et al. (2007). Tissue specialization at the metabolite level is perceived during the development of tomato fruit. Journal of Experimental Botany, 58, 4131–4146. doi:10.1093/jxb/erm271.

    Article  PubMed  CAS  Google Scholar 

  • Moing, A., Maucourt, M., Renaud, C., et al. (2004). Quantitative metabolic profiling through one-dimensional 1H-NMR analyses: Application to plant genetics and functional genomics. Functional Plant Biology, 31, 889–902. doi:10.1071/FP04066.

    Article  CAS  Google Scholar 

  • Mounet, F., Lemaire-Chamley, M., Maucourt, M., et al. (2007). Quantitative metabolic profiles of tomato flesh and seeds during fruit development: Complementary analysis with ANN and PCA. Metabolomics, 3, 273–288. doi:10.1007/s11306-007-0059-1.

    Article  CAS  Google Scholar 

  • Pereira, G. E., Gaudillère, J. P., van Leeuven, C., et al. (2006a). 1H NMR metabolic fingerprinting of grape berry: Comparison of vintage and soil effects in Bordeaux grapevine growing areas. Analytica Chimica Acta, 563, 346–352. doi:10.1016/j.aca.2005.11.007.

    Article  CAS  Google Scholar 

  • Pereira, G. E., Gaudillère, J. P., Pieri, P., et al. (2006b). Microclimate influence on mineral and metabolic profiles of grape berries. Journal of Agricultural and Food Chemistry, 54, 6765–6775. doi:10.1021/jf061013k.

    Article  PubMed  CAS  Google Scholar 

  • Raffo, A., La Malfa, G., Fogliano, V., Malani, G., & Quaglia, G. (2006). Seasonal variations in antioxidant components of cherry tomatoes (Lycopersicon esculentum cv. Naomi F1). Journal of Food Composition and Analysis; An Official Publication of the United Nations University, International Network of Food Data Systems, 19, 11–19. doi:10.1016/j.jfca.2005.02.003.

    CAS  Google Scholar 

  • Rolin, D., Baldet, P., Just, D., Chevalier, C., Biran, M., & Raymond, P. (2000). NMR study of low subcellular pH during the development of cherry tomato fruit. Australian Journal of Plant Physiology, 27, 61–69. doi:10.1071/PP99051.

    CAS  Google Scholar 

  • Rosales, M. A., Rubio-Wilhelmi, M. M., Castellano, R., Castilla, N., Ruiz, J. M., & Romero, L. (2007). Sucrolytic activities in cherry tomato fruits in relation to temperature and solar radiation. Scientia Horticulturae, 113, 244–249. doi:10.1016/j.scienta.2007.03.015.

    Article  Google Scholar 

  • Rosales, M. A., Ruiz, J. M., Hernandez, J., Soriano, T., Castilla, N., & Romero, L. (2006). Antioxidant content and ascorbate metabolism in cherry tomato exocarp in relation to temperature and solar radiation. Journal of the Science of Food and Agriculture, 86, 1545–1551. doi:10.1002/jsfa.2546.

    Article  CAS  Google Scholar 

  • Ruffner, H. P., Hawker, J. S., & Hale, C. R. (1976). Temperature and enzymic control of malate metabolism in berries of Vitis vinifera. Phytochemistry, 15, 1877–1880. doi:10.1016/S0031-9422(00)88835-4.

    Article  CAS  Google Scholar 

  • Ruffner, H. P., Possner, D., Brem, S., & Rast, D. M. (1984). The physiological role of malic enzyme in grape ripening. Planta, 160, 444–448. doi:10.1007/BF00429761.

    Article  CAS  Google Scholar 

  • Saeed, A., Sharov, V., White, J., et al. (2003). TM4: A free, open-source system for microarray data management and analysis. BioTechniques, 34, 374–378.

    PubMed  CAS  Google Scholar 

  • Sas Institute. (1990). SAS/STAT user’s guide, version 6 (4th ed.). Cary, NC: SAS Institute Inc.

    Google Scholar 

  • Schauer, N., Zamir, D., & Fernie, A. R. (2005). Metabolic profiling of leaves and fruit of wild species tomato: A survey of the Solanum lycopersicum complex. Journal of Experimental Botany, 56, 297–307. doi:10.1093/jxb/eri057.

    Article  PubMed  CAS  Google Scholar 

  • Shulaev, V., Cortes, D., Miller, G., & Mittler, R. (2008). Metabolomics for plant stress response. Physiologia Plantarum, 132, 199–208.

    PubMed  CAS  Google Scholar 

  • Spanos, G., & Wrolstad, R. (1990). Berry phenolics and their antioxidant activity. Journal of Agricultural and Food Chemistry, 38, 1565–1571. doi:10.1021/jf00097a030.

    Article  CAS  Google Scholar 

  • Stanghellini, C., van Meurs, W. T. M., Corver, F., van Dullemane, E., & Simonse, L. (1998). Combined effect of climate and concentration of the nutrient solution on a greenhouse tomato crop. II: Yield quantity and quality. Acta Horticulturae, 458, 231–237. http://www.actahort.org/books/458/458_27.htm.

    Google Scholar 

  • Stevens, A. M., Kader, A. A., & Albright, M. (1979). Potential for increasing tomato flavor via increased sugar acid content. Journal of the American Society for Horticultural Science, 104, 40–42.

    Google Scholar 

  • Stevens, M. A. (1972). Citrate and malate concentrations in tomato fruits: Genetic control and maturational effects. Journal of the American Society for Horticultural Science, 97, 655–658.

    CAS  Google Scholar 

  • Stevens, M. A., Kader, A. A., Albright-Holton, M., & Algazi, M. (1977). Genotypic variation for flavor and composition in fresh market tomatoes. Journal of the American Society for Horticultural Science, 102, 680–689.

    CAS  Google Scholar 

  • Stevens, R., Buret, M., Garchery, C., Carretero, Y., & Causse, M. (2006). Technique for rapid, small-scale analysis of vitamin C levels in fruit and application to a tomato mutant collection. Journal of Agricultural and Food Chemistry, 54, 6159–6165. doi:10.1021/jf061241e.

    Article  PubMed  CAS  Google Scholar 

  • Sumner, L. W., Mendes, P., & Dixon, R. A. (2003). Plant metabolomics: Large-scale phytochemistry in the functional genomics era. Phytochemistry, 62, 817–836. doi:10.1016/S0031-9422(02)00708-2.

    Article  PubMed  CAS  Google Scholar 

  • Tamaoki, M., Mukai, F., Asai, N., et al. (2003). Light-controlled expression of a gene encoding l-galactono-gamma-lactone dehydrogenase which affects ascorbate pool size in Arabidopsis thaliana. Plant Science, 164, 1111–1117. doi:10.1016/S0168-9452(03)00122-5.

    Article  CAS  Google Scholar 

  • Tiziani, S., Schwartz, S. J., & Vodovotz, Y. (2006). Profiling of carotenoids in tomato juice by one- and two-dimensional NMR. Journal of Agricultural and Food Chemistry, 54, 6094–6100. doi:10.1021/jf061154m.

    Article  PubMed  CAS  Google Scholar 

  • Valpuesta, V., & Botella, M. A. (2004). Biosynthesis of l-ascorbic acid in plants: new pathways for an old antioxidant. Trends in Plant Science, 9, 573–577. doi:10.1016/j.tplants.2004.10.002.

    Article  PubMed  CAS  Google Scholar 

  • Willcox, J. K., Catignani, G. L., & Lazarus, S. (2003). Tomatoes and cardiovascular health. Critical Reviews in Food Science and Nutrition, 43, 1–18. doi:10.1080/10408690390826437.

    Article  PubMed  CAS  Google Scholar 

  • Wolucka, B. A., & van Montagu, M. (2007). The VTC2 cycle and the de novo biosynthesis pathways for vitamin C in plants: An opinion. Phytochemistry, 68, 2602–2613. doi:10.1016/j.phytochem.2007.08.034.

    Article  PubMed  CAS  Google Scholar 

  • Zeisel, S. H. (2000). Choline: An essential nutrient for humans. Nutrition, 16, 669–671. doi:10.1016/S0899-9007(00)00349-X.

    Article  PubMed  CAS  Google Scholar 

  • Zeisel, S. H., Mar, M., Howe, J. C., & Holden, J. M. (2003). Concentrations of choline-containing compounds and betaine in common foods. The Journal of Nutrition, 133, 1302–1307.

    PubMed  CAS  Google Scholar 

  • Zekki, H., Gauthier, L., & Gosselin, A. (1996). Growth, productivity, and mineral composition of hydroponically cultivated greenhouse tomatoes, with and without nutrient solution recycling. Journal of the American Society for Horticultural Science, 121, 1082–1088. http://journal.ashspublications.org/cgi/gca?allch=&SEARCHID=1&FULLTEXT=gosselin&VOLUME=121&ISSUE=6&FIRSTINDEX=0&hits=10&RESULTFORMAT=&gca=jashs%3B121%2F6%2F1082.

    Google Scholar 

Download references

Acknowledgements

We thank Dr. C. Chevalier for critical reading of the manuscript, C. Favet and the Hortis Aquitaine team for taking care of the plants, Dr. P. Vivin for access to WINDAS software, C. Rolin for language corrections and Région Aquitaine for partial funding of the project (Project No. 20051303006ABC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Deborde.

Electronic supplementary material

Below is the link to the electronic supplementary material.

The NMR spectra of the dataset with associated metadata has been deposited into the Metabolomics Repository of Bordeaux MeRy-B (http://cbib.u-bordeaux2.fr/MERYB/public/PublicREF.php?REF=T04001) (Accession Project: T04001).

Tables with the experimentally determined concentrations of metabolites measured from the 188 1H-NMR spectra of the studied extracts are available in the online version of this article. Detailed description of Figs. 5 and 7 are presented in Supplementary Data comments Fig. 5 and Supplementary Data comments Fig. 7.

MOESM1 (RTF 4,200 kb)

MOESM2 (DOC 26 kb)

MOESM3 (DOC 23 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deborde, C., Maucourt, M., Baldet, P. et al. Proton NMR quantitative profiling for quality assessment of greenhouse-grown tomato fruit. Metabolomics 5, 183–198 (2009). https://doi.org/10.1007/s11306-008-0134-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-008-0134-2

Keywords

Navigation