Skip to main content
Log in

Microsatellite variability in apricots (Prunus armeniaca L.) reflects their geographic origin and breeding history

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

A collection of 133 apricot cultivars and three related species originating from different geographical regions were studied with 10 polymorphic microsatellite markers developed in apricot. Altogether, 133 alleles were identified in the set of accessions, with an average of 13.30 alleles per locus. Out of them, 32 alleles occurred only once in the investigated samples, especially in apricots originating from different eco-geographic groups or in different species. The observed heterozygosity for individual loci ranged from 0.8636 to 0.3182, with an average of 0.6281. An unweighted pair group method with arithmetic mean dendrogram based on Nei's genetic distance grouped the accessions according to their eco-geographical origin and/or their pedigree information. Central Asian cultivars have a distinct position on the dendrogram, which supports the assumption that most cultivars have an Asian ancestor. Most East European cultivars analysed cluster together, and the data even revealed a few synonyms. Results show that American cultivars have not only European germ plasm in their pedigree, but they have also been enriched with germ plasm of Asian origin. The implications of these data for the use of simple sequence repeat (SSR) markers as a tool for fingerprinting cultivars in breeders' rights protection and apricot breeding are discussed. In this paper, we demonstrate for the first time the variability of apricot SSRs in a large collection of apricot cultivars and closely related species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Audergon JM (1995) Variety and breeding. Acta Hortic 384:35–45

    Google Scholar 

  2. Badenes ML, Asíns MJ, Carbonell EA, Llácer G (1996) Genetic diversity in apricot (Prunus armeniaca L.) attending to Plum Pox Virus resistance. Plant Breed 115:120–133

    Google Scholar 

  3. Badenes ML, Martínez-Calvo J, Llácer G (1998) Analysis of apricot germplasm from the European eco-geographical group. Euphytica 102:93–99

    Article  Google Scholar 

  4. Bassi D, Bellini D, Guerriero R, Monastra F, Pennone F (1995) Apricot breeding in Italy. Acta Hortic 384:47–54

    Google Scholar 

  5. Brozik S, Kállay T (2000) Csonthejas gyümölcsfajtak. Agrarmarketing Centrum, Budapest, pp 127–154

    Google Scholar 

  6. Ciofi C, Funk SM, Coote T, Cheesman D, Hammond RL, Saccheri IJ, Bruford MW (1998) In: Karp A, Isaac PG, Ingram DS (eds) Molecular tools for screening biodiversity. Chapman and Hall, London, pp 413–417

    Google Scholar 

  7. De Vicente MC, Truco MJ, Egea J, Burgos L, Arús P (1998) RFLP variability in apricot (Prunus armeniaca L.). Plant Breed 117:153–158

    Article  Google Scholar 

  8. Egea J, Burgos L, Martinez-Gomez P, Dicenta F (1999) Apricot breeding for sharka resistance at CEBAS-CSIC, Murcia (Spain). Acta Hortic 488:153–157

    Google Scholar 

  9. FAOSTAT (2004) Agriculture database. Web site: http://faostat.fao.org/faostat/collections?version=ext&hasbulk=0&subset=agriculture

  10. Faust M, Surányi D, Nyujtö F (1998) Origin and dissemination of apricot. Hortic Rev 22:225–266

    Google Scholar 

  11. Fischer M (2003) Farbatlas Obstsorten. Verlag Eugen Ulmer, Stuttgart, Germany, pp 195–201

    Google Scholar 

  12. Fossati T, Grassi F, Sala F, Castiglione S (2003) Molecular analysis of natural populations of Populus nigra L. intermingled with cultivated hybrids. Mol Ecol 12, 2033–2043

    Article  PubMed  CAS  Google Scholar 

  13. Geuna F, Toschi M, Bassi D (2003) The use of AFLP markers for cultivar identification in apricot. Plant Breed 122:526–531

    Article  CAS  Google Scholar 

  14. Gogorcena Y, Parfitt DE (1994) Evaluation of RAPD marker consistency for detection of polymorphism in apricot. Sci Hortic 59:163–167

    Article  Google Scholar 

  15. Gurrieri F, Audergon JM, Albagnac G, Reich M (2001) Soluble sugars and carboxylic acids in ripe apricot fruit as parameters for distinguishing different cultivars. Euphytica 117:183–189

    Article  CAS  Google Scholar 

  16. Hagen S, Khadari B, Lambert P, Audergon JM (2002) Genetic diversity in apricot revealed by AFLP markers: species and cultivar comparisons. Theor Appl Genet 105:298–305

    Article  PubMed  CAS  Google Scholar 

  17. Hagen S, Chaib J, Fady B, Decroocq V, Bouchet P, Lambert P, Audergon JM (2004) Genomic and cDNA microsatellites from apricot (Prunus armeniaca L.). Mol Ecol Notes 4:742–745

    Article  CAS  Google Scholar 

  18. Hartl DL, Clark AG (1997) Principles of population genetics, 2nd edn. Sinauer, Sunderland

  19. Hormaza JI (2001) Identification of apricot (Prunus armeniaca L.) genotypes using microsatellite and RAPD markers. Acta Hortic 546:209–215

    CAS  Google Scholar 

  20. Hormaza JI (2002) Molecular characterization and similarity relationships among apricot (Prunus armeniaca L.) genotypes using simple sequence repeats. Theor Appl Genet 104:321–328

    Article  PubMed  CAS  Google Scholar 

  21. Guerriero R, Watkins R (eds) (1984) Revised descriptor list for apricot (Prunus armeniaca). IBPGR Secretariat, Rome, CEC Secretariat, Brüssels

  22. Karp A, Seberg O, Buiatti M (1996) Molecular techniques in the assessment of botanical diversity. Ann Bot 78:143–149

    Article  CAS  Google Scholar 

  23. Kostina KF (1969) The use of varietal resources of apricots for breeding. Trud Nikit Bot Sada 40:45–63

    Google Scholar 

  24. Levene H (1949) On a matching problem in genetics. Ann Math Stat 20:91–94

    Article  Google Scholar 

  25. Lichou J (1998) Abricot. Ctifl, Paris, France, pp 186–248

    Google Scholar 

  26. Lichou J, Jay M, Vaysse P, Lespinasse N (2003) Recognizing apricot varieties. Ctifl, Paris, France, pp 32–89

    Google Scholar 

  27. Lopes MS, Sefc KM, Laimer M, da Câmara Machado A (2002) Identification of microsatellite loci in apricot. Mol Ecol Notes 2:24–26

    Article  CAS  Google Scholar 

  28. Löschnig HJ, Passecker F (1954) Die Marille (Aprikose) und ihre Kultur. Östereichischer Agrarverlag Wien, Austria

  29. Messina R, Lain O, Marrazzo MT, Cipriani G, Testolin R (2004) New set of microsatellite loci isolated in apricot. Mol Ecol Notes 4:432–434

    Article  CAS  Google Scholar 

  30. Mehlenbacher SA, Cociu V, Hough F (1991) Apricot (Prunus). In: Moore JN, Ballington RJ (eds) Genetic resource of temperate fruit and nut crops. ISHS, Wageningen, pp 65–107

    Google Scholar 

  31. Morgante M, Olivieri AM (1993) PCR-amplified microsatellites as markers in plant genetics. Plant J 3:175–182

    Article  PubMed  CAS  Google Scholar 

  32. Nei M (1972) Genetic distance between populations. Am Nat 106:283–292

    Article  Google Scholar 

  33. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci U S A 70:3321–3323

    Article  PubMed  CAS  Google Scholar 

  34. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    PubMed  Google Scholar 

  35. OECD (2002) Consensus document on the biology of Prunus sp. (stone fruits): series on harmonization of regulatory oversights in biotechnology nr. 24. http://www.olis.oecd.org/olis/2002doc.nsf/LinkTo/env-jm-mono

  36. Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  37. Powell W, Machray GC, Provan J (1996) Polymorphism revealed by simple sequence repeats. Trends Plant Sci 7:215–222

    Google Scholar 

  38. Rehder I (1940) Manual of cultivated trees and shrubs hardy in North American. MacMillan, New York

  39. Romero C, Pedryc A, Munoz V, Llacer G, Badenes ML (2003) Genetic diversity of different apricot geographical groups determined by SSR markers. Genome 46:244–252

    Article  PubMed  CAS  Google Scholar 

  40. Ruthner S, Bisztray DG, Deak T, Laimer M, Pedryc A (2003) Characterization of apricot varieties with different origin using molecular markers. 4th international conference of Ph.D. students, University of Miskolc, Hungary

  41. Steinkellner H, Lexer C, Turetschek E, Glössl J (1997) Conservation of (GA)n microsatellite loci between Quercus species. Mol Ecol 6:1189–1194

    Article  CAS  Google Scholar 

  42. Strada GD, Pennone F, Fideghelli C, Monastra F, Cobianchi D (1989) Monografia di cultivar di albicocco. Istituto Sperimentale per la Frutticoltura, Roma

  43. Takeda T, Shimada T, Nomura K, Ozaki T, Haji T, Yamaguchi M, Yoshida M (1998) Classification of apricot varieties by RAPD analysis. J Japan Soc Hort Sci 67:21–27

    Article  CAS  Google Scholar 

  44. Tautz D, Schlötterer C (1994) Simple sequences. Curr Opin Genet Dev 4:832–837

    Article  PubMed  CAS  Google Scholar 

  45. White KD (1970) Roman farming. Cornell University Press, Ithaca

  46. Zhebentyayeva TN, Sivolap YM (2000) Genetic diversity of apricot determined by isoenzyyme and RAPD analyses. Acta Hortic 538:525–529

    CAS  Google Scholar 

  47. Zhebentyayeva TN, Reighard GL, Gorina VM, Abbott AG (2003) Simple sequences repeat (SSR) analysis for assessment of genetic variability in apricot germplasm. Theor Appl Genet 106:435–444

    PubMed  CAS  Google Scholar 

  48. Zohary D, Spiegel Roy P (1975) Beginning of fruit growing in the Old World. Science 187:319–327

    Article  PubMed  Google Scholar 

  49. Zohary D, Hopf M (1994) Domestication of plants in the Old World, 2nd edn. Clarendon, Oxford, pp 134–180

    Google Scholar 

  50. Yeh FC, Boyle TJB (1997) Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belg J Bot 129:156–159

    Google Scholar 

Download references

Acknowledgements

Drs. A. Martinelli (CIV, Ferrara, Italy), M. Fliri (South Tyrol) and R. Zelger (Laimburg, South Tyrol) are kindly acknowledged for providing material of CIV breeding lines, seedlings of apricots from Pakistan and Vinschger Marille, respectively. The authors thank the ZAG, BOKU, Vienna, for the opportunity to use the Capillary Sequencer 3100. This work was supported financially by the projects “Pannonia” of the BMBWK and “Charakterisierung transgener Obstbäume und Untersuchungen direkter und indirekter biologischer Wechselwirkungen” of the BMBWK and the BMLFUW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margit Laimer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maghuly, F., Fernandez, E.B., Ruthner, S. et al. Microsatellite variability in apricots (Prunus armeniaca L.) reflects their geographic origin and breeding history. Tree Genetics & Genomes 1, 151–165 (2005). https://doi.org/10.1007/s11295-005-0018-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-005-0018-9

Keywords

Navigation