Skip to main content
Log in

Ecological risks in anthropogenic disturbance of nitrogen cycles in natural terrestrial ecosystems

  • Special Feature
  • Ecological risk management
  • Published:
Ecological Research

Abstract

Anthropogenic addition of reactive nitrogen (Nr) to the biosphere is increasing globally and some terrestrial ecosystems are suffering from a state of excess Nr for biological nitrogen (N) demand, termed N saturation. Here, we review the ecological risks in relation to N saturation and prospective responses to N saturation. Excess Nr increases the risks of local extinction of rare plant species, encouragement of exotic plant species, disturbance of nutrient balance in plant organs, and increase of herbivory in plant communities. On the ecosystem scale, excess bioavailable N induces forest decline, disturbance of nutrient cycling within ecosystems, depending on vegetation, soil, land-use, and N-loading history. These Nr risks will increase in the Asian region, where impacts of Nr in natural terrestrial ecosystems have been scarcely studied. Whether much of the terrestrial ecosystems on a global level are in the sate of N saturation or not is still controversial, but the potential risks of excess Nr seem to be increasing. The fundamental ways to mitigate Nr risks are to reduce Nr production, prevent Nr translocation, and promote conversion of Nr to N2. Temporal, but promising actions against ecological N risks may include management of forests and riparian zones, and carbon addition in grassland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aber JD, Nadelhoffer KJ, Steudler P, Melillo JM (1989) Nitrogen saturation in northern forest ecosystems. Bioscience 39:378–386

    Article  Google Scholar 

  • Aber JD, McDowell W, Nadelhoffer K, Magil A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998) Nitrogen saturation in temperate forest ecosystems: hypotheses revisited. Bioscience 48:921–934

    Article  Google Scholar 

  • Aber JD, Goodale SL, Ollinger SV, Smith M-L, Magill AH, Martin ME, Hallet RA, Stoddard JL (2003) Is nitrogen deposition altering the nitrogen status of northeastern forests? Bioscience 53:375–389

    Article  Google Scholar 

  • Aerts R, Chapin FS (2000) The mineral nutrition of wild plants revisited: a reevaluation of process and patterns. Adv Ecol Res 30:1–67

    Article  CAS  Google Scholar 

  • Aiba Y, Haibara K, Kawabata S (1983) The effects of intensive tending work on soil productivity (II) decomposition and movement of potential nutrients of fallen sugi (Cryptomeria japonica D. Don) foliage from green pruning. J Jpn For Soc 65:215–219 (in Japanese with English summary)

    Google Scholar 

  • Aiba Y, Haibara K, Kondo H, Ikeda N (1985) The effects of intensive tending works on soil productivity (III) nutrient discharge from young stands caused by weeding, fertilization, and the first pruning. J Jpn For Soc 67:73–81 (in Japanese with English summary)

    Google Scholar 

  • Basynat P, Teeter LD, Lockaby BG, Flynn KM (2000) The use of remote sensing and GIS in watershed level analyses of non-point source pollution problems. For Ecol Manage 128:65–73

    Article  Google Scholar 

  • Bigelow SW, Canham CD (2007) Nutrient limitation of juvenile trees in a northern hardwood forest: calcium and nitrate are preeminent. For Ecol Manage 243:310–319

    Article  Google Scholar 

  • Blumenthal DM, Jordan NR, Russelle MP (2003) Soil carbon addition controls weeds and facilitates prairie restoration. Ecol Appl 13:605–615

    Article  Google Scholar 

  • Cassidy TM, Fownes JH, Harrington RA (2004) Nitrogen limits an invasive perennial shrub in forest understory. Biol Invasions 6:113–121

    Article  Google Scholar 

  • Castro MS, Eshleman KN, Pitelka LF, Frech G, Ramsey M, Currie WS, Kuers K, Simmons JA, Pohlad BR, Thomas CL, Johnson DM (2007) Symptoms of nitrogen saturation in an aggrading forested watershed in western Maryland. Biogeochemistry 84:333–348

    Article  CAS  Google Scholar 

  • Chapin FS, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, Hooper DU, Lavorel S, Sala OE, Hobbie SE, Mack MC, Diaz S (2000) Consequence of changing biodiversity. Nature 405:234–242

    Article  PubMed  CAS  Google Scholar 

  • Clark CM, Tilman D (2008) Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature 451:712–715

    Article  PubMed  CAS  Google Scholar 

  • Currie WS (1999) The responsive C and N biogeochemistry of the temperate forest floor. Trends Ecol Evol 14:316–320

    Article  PubMed  Google Scholar 

  • Del Grosso SJ, Parton WJ, Mosier AR, Ojima DS, Kulmala AE, Phongpan S (2000) General model for N2O and N2 gas emissions from soil due to denitrification. Global Biogeochem Cycles 14:1045–1060

    Article  CAS  Google Scholar 

  • Dijkstra FA, West JB, Hobbie SE, Reich PB, Trost J (2007) Plant diversity, CO2, and N influence inorganic and organic N leaching in grasslands. Ecology 88:490–500

    Article  PubMed  Google Scholar 

  • Dillon PJ, Molot LA (1990) The role of ammonium and nitrate in acidification of lakes and forested catchments. Biogeochemisitry 11:23–44

    Google Scholar 

  • Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6:503–523

    Article  CAS  Google Scholar 

  • Enoki T, Kawaguchi H, Iwatsubo G (1997) Nutrient-uptake and nutrient-use efficiency of Pinus thunbergii Parl. along a topographical gradient of soil nutrient availability. Ecol Res 12:191–199

    Article  CAS  Google Scholar 

  • Erinsman JW, de Vries W (2000) Nitrogen deposition and effects in European forests. Environ Rev 8:65–93

    Article  Google Scholar 

  • Eschen R, Mortimer SR, Lawson CS, Edwards AR, Brook AJ, Igual JM, Hedlund K, Schaffner U (2007) Carbon addition alters vegetation composition on ex-arable fields. J Appl Ecol 44:95–104

    Article  CAS  Google Scholar 

  • Feller MC (2005) Forest harvesting and streamwater inorganic chemistry in western North America: a review. J Am Water Resour Assoc 41:785–811

    CAS  Google Scholar 

  • Fenn ME, Poth MA, Aber JD, Baron JS, Bormann BT, Johnson DW, Lemly AD, McNulty SG, Ryan DF, Stottlemyer R (1998) Nitrogen excess in North American ecosystems: predisposing factors, ecosystem responses, and management strategies. Ecol Appl 8:706–733

    Article  Google Scholar 

  • Fujimaki R, Kawasaki A, Fujii Y, Kaneko N (2008) The influence of topography on the stream N concentration in the Tanzawa Mountains, Southern Kanto District, Japan. J For Res 13:380–385

    Article  CAS  Google Scholar 

  • Fukushima K, Tokuchi N (2008) Effects of forest clearcut and afforestation on streamwater chemistry in Japanese cedar (Cryptomeria japonica) forests: comparison among watersheds of various stand ages. J Jpn For Soc 90:6–16 (in Japanese with English summary)

    Article  CAS  Google Scholar 

  • Fukuzawa K, Shibata H, Takagi K, Nomura M, Kurima N, Fukazawa T, Satoh F, Sasa K (2006) Effects of clear-cutting on nitrogen leaching and fine root dynamics in a cool-temperate forested watershed in northern Japan. For Ecol Manage 225:261–275

    Article  Google Scholar 

  • Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW, Cowling EB, Cosby BJ (2003) The nitrogen cascade. Bioscience 53:341–356

    Article  Google Scholar 

  • Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vörösmarty CJ (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226

    Article  CAS  Google Scholar 

  • Gilliam FS (2006) Response of the herbaceous layer of forest ecosystems to excess nitrogen deposition. J Ecol 94:1176–1191

    Article  CAS  Google Scholar 

  • Gilliam FS, Yurich BM, Adams MB (2001) Temporal and spatial variation of nitrogen transformations in nitrogen saturated soils of a Central Appalachian hardwood forest. Can J For Res 31:1768–1785

    Article  CAS  Google Scholar 

  • Gress SE, Nichols TD, Northcraft CC, Peterjohn WT (2007) Nutrient limitation in soils exhibiting differing nitrogen availabilities: what lies beyond nitrogen saturation? Ecology 88:119–130

    Article  PubMed  Google Scholar 

  • Gundersen P, Emmett BA, Kjønaas OJ, Koopmans CJ, Tietema A (1998) Impact of nitrogen deposition on nitrogen cycling in forests: a synthesis of NITREX data. For Ecol Manage 101:37–55

    Article  Google Scholar 

  • Gundersen P, Schmidt IK, Raulund-Rasmussen K (2006) Leaching of nitrate from temperate forests - effects of air pollution and forest management. Environ Rev 14:1–57

    Article  CAS  Google Scholar 

  • Haibara K, Aiba Y (1990) Effects of tending practice on nutrient dynamics in a young stand of sugi (Cryptomeria japonica) and hinoki (Chamaecyparis obtusa). For Ecol Manage 30:233–246

    Article  Google Scholar 

  • Hansen K, Rosenqvist L, Vesterdal L, Gundersen P (2007) Nitrate leaching from three afforestation chronosequences on former arable land in Denmark. Global Chang Biol 13:1250–1264

    Article  Google Scholar 

  • Haycock NE, Pinay G, Waker C (1993) Nitrogen retention in river corridors: European perspective. Ambio 22:340–346

    Google Scholar 

  • Hefting MM, Bobbink R, Janssens MP (2006) Spatial variation in denitrification and N2O emission in relation to nitrate removal efficiency in a N-stressed riparian buffer zone. Ecosystems 9:550–563

    Article  CAS  Google Scholar 

  • Hill AR (1996) Nitrate removal in stream riparian zones. J Environ Qual 25:743–755

    Article  CAS  Google Scholar 

  • Hill AR, Devito KJ, Campagnolo S, Sanmugadas K (2000) Subsurface denitrification in a forest riparian zone: interaction between hydrology and supplies of nitrate and organic carbon. Biogeochemistry 51:193–223

    Article  Google Scholar 

  • Hodge A, Robinson D, Fitter A (2000) Are microorganisms more effective than plants at competing for nitrogen? Trends Plant Sci 5:304–308

    Article  PubMed  CAS  Google Scholar 

  • Holland EA, Dentener FJ, Bobby HB, Sulzman JM (1999) Contemporary and pre-industrial global reactive nitrogen budgets. Biogeochemistry 46:7–43

    CAS  Google Scholar 

  • Homyak PM, Yanai RD, Burns DA, Briggs RD, Germain RH (2008) Nitrogen immobilization by wood-chip application: protecting water quality in a northern hardwood forest. For Ecol Manage 255:2589–2601

    Article  Google Scholar 

  • Hong B, Swaney DP, Woodbury PB, Weinstein DA (2005) Long-term nitrate export pattern from Hubbard Brook watershed 6 driven by climatic variation. Water Air Soil Pollut 160:293–326

    Article  CAS  Google Scholar 

  • Hutchings MJ, John EA, Wijestinghe DK (2003) Toward understanding the consequence of sol heterogeneity for plant populations and communities. Ecology 84:2322–2334

    Article  Google Scholar 

  • Ito A (2002) Soil organic carbon storage as a function of the terrestrial ecosystem with respect to the global carbon cycle (in Japanese with English summary). Jpn J Ecol 52:189–227

    Google Scholar 

  • Jonasson S, Vestergaard P, Jensen M, Michelsen A (1996) Effects of carbohydrate amendments on nutrient partitioning, plant and microbial performance of a grassland-shrub ecosystem. Oikos 75:220–226

    Article  Google Scholar 

  • Judd KE, Likens GE, Groffman PM (2007) High nitrate retention during winter in soils of the Hubberd Brook Experimental Forest. Ecosystems 10:217–225

    Article  CAS  Google Scholar 

  • Laverman AM, Borgers P, Verhoef HA (2002) Spatial variation in net nitrate production in a N-saturated coniferous forest soil. For Ecol Manage 161:123–132

    Article  Google Scholar 

  • Likens GE, Borman FH, Johnson NM, Fisher DW, Pierce RS (1970) Effects of forest cutting and herbicide treatment on nutrient budgets in the Hubbard Brook ecosystem in New Hampshire. Ecol Monogr 40:23–47

    Google Scholar 

  • Lilleskov EA, Fahey TJ, Horton TR, Lovett GM (2002) Belowground ectomyocrrizal fungal community change over a nitrogen deposition gradient in Alaska. Ecology 83:104–115

    Google Scholar 

  • Lovett GM, Weathers KC, Arthur MA (2002) Control of nitrogen loss from forested watersheds by soil carbon:nitrogen ratio and tree species composition. Ecosystems 5:712–718

    Article  CAS  Google Scholar 

  • Lovett GM, Weathers KCV, Arthur MA, Schultz JC (2004) Nitrogen cycling in a northern hardwood forest: do species matter? Biogeochemistry 67:289–308

    Article  CAS  Google Scholar 

  • Lowrance RR, Todd R, Fail J, Hendrickson O, Leonard R, Asmussen L (1984) Riparian forests as nutrient filters in agricultural watersheds. Bioscience 34:374–377

    Article  Google Scholar 

  • Mack MC, Schuur EAG, Bret-Harte MS, Shaver GR, Chapin FS (2004) Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature 431:440–443

    Article  PubMed  CAS  Google Scholar 

  • Magill AH, Aber JD, Berntson GM, McDowell WH, Nadelhoffer KJ, Melillo JM, Steudler P (2000) Long-term nitrogen addition and nitrogen saturation in two temperate forests. Ecosystems 3:238–253

    Article  Google Scholar 

  • Magill AH, Aber JD, Currie WS, Nadelhoffer KJ, Martin ME, McDowell WH, Melillo JM, Steudler P (2004) Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest LTER, Massachusetts, USA. For Ecol Manage 196:7–28

    Article  Google Scholar 

  • Magnani F, Mencuccini M, Borghetti M, Berbigier P, Berninger F, Selzon S, Grelle A, Hari P, Jarvis PG, Kolari P, Kowalski AS, Lankreijer H, Law BE, Lindroth A, Loustau D, Manca G, Moncrieff JB, Rayment M, Tedeschi V, Valentini R, Grace J (2007) The human footprint in the carbon cycle of temperate and boreal forests. Nature 447:848–850

    Article  PubMed  CAS  Google Scholar 

  • Mayer PM, Reynolds SK, McCutchen MD, Canfield TJ (2007) Meta-analysis of nitrogen removal in riparian buffers. J Environ Qual 36:1172–1180

    Article  PubMed  CAS  Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: synthesis. Island Press, Washington, DC

  • Mitchell MJ, Iwatsubo G, Ohrui K, Nakagawa Y (1997) Nitrogen saturation in Japanese forests: an evaluation. For Ecol Manage 97:39–51

    Article  Google Scholar 

  • Nadelhoffer KJ, Downs MR, Fry B (1999a) Sinks for N additions to an oak forest and a red pine plantation at the Harvard Forest, Massachusetts, USA. Ecol Appl 9:72–86

    Article  Google Scholar 

  • Nadelhoffer KJ, Emmett BA, Gundersen P, Kjønaas OJ, Koopmans CJ, Schleppi P, Tietema A, Wright RF (1999b) Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature 398:145–148

    Article  CAS  Google Scholar 

  • Nagakura J, Akama A, Mizoguchi T, Okabe H, Shigenaga H, Yamanaka T (2006) Effects of chronic nitrogen application on the growth and nutrient status of a Japanese cedar (Cryptomeria japonica) stand. J For Res 11:299–304

    Article  CAS  Google Scholar 

  • Neff JC, Townsend AR, Gleixner G, Lehman SJ, Turnbull J, Bowman WD (2002) Variable effects of nitrogen additions on the stability and turnover of soil carbon. Nature 419:915–917

    Article  PubMed  CAS  Google Scholar 

  • Nordin A, Strengbom J, Ericson L (2006) Responses to ammonium and nitrate additions by boreal plants and their natural enemies. Environ Pollut 141:167–174

    Article  PubMed  CAS  Google Scholar 

  • Ohrui K, Mitchell MJ (1998) Spatial patterns of soil nitrate in Japanese forested watersheds: importance of the near-stream zone as a source of nitrate in stream water. Hydrol Process 12:1433–1445

    Article  Google Scholar 

  • Ohte N, Tokuchi N, Shibata H, Tsujimura M, Tanaka T, Mitchell MJ (2001) Hydrobiogeochemistry of forest ecosystems in Japan: major themes and research issues. Hydrol Process 15:1771–1789

    Article  Google Scholar 

  • Oren R, Ellsworth DR, Johnsen KH, Phillips N, Ewers BE, Maier C, Schäfer KVR, McCarthy H, Hendrey G, McNulty SG, Katul GG (2001) Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature 411:469–472

    Article  PubMed  CAS  Google Scholar 

  • Ozawa M, Shibata H, Satoh F, Sasa K (2001) Effects of surface soil removalon dynamics of dissolved inorganic nitrogen in a snow-dominated forest. Sci World 1(S2):527–533

    Google Scholar 

  • Parfitt RL, Schipper LA, Baisden WT, Elliott AH (2006) Nitrogen inputs and outputs for New Zealand in 2001 at national and regional scales. Biogeochemistry 80:71–88

    Article  Google Scholar 

  • Piatek KB, Mitchell MJ, Silva SR, Kendall C (2005) Sources of nitrate in snowmelt discharge: evidence from water chemistry and stable isotopes of nitrate. Water Air Soil Pollut 165:13–35

    Article  CAS  Google Scholar 

  • Post WM, Emanuel WR, Zinke PJ, Stangenberger AG (1982) Soil carbon pools and world life zones. Nature 298:156–159

    Article  CAS  Google Scholar 

  • Prober SM, Thiele KR, Lunt ID, Koen TB (2005) Restoring ecological function in temperate grassy woodlands: manipulating soil nutrients, exotic annuals and native perennial grasses through carbon supplements and spring burns. J Appl Ecol 42:1073–1085

    Article  CAS  Google Scholar 

  • Reich PB, Hobbie SE, Lee T, Ellsworth DS, West JB, Tilman D, Knops JMH, Naeem S, Trost J (2006) Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature 440:922–925

    Article  PubMed  CAS  Google Scholar 

  • Schade JD, Fisher SG, Grimm NB, Seddon JA (2001) The influence of a riparian shrub on nitrogen cycling in a Sonoran Desert stream. Ecology 82:3363–3376

    Article  Google Scholar 

  • Schimel JP, Bennett J (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602

    Article  Google Scholar 

  • Shibata H, Kuraji K, Toda H, Sasa K (2001) Regional comparison of nitrogen export to Japanese forest streams. Sci World J 1(S2):572–580

    Google Scholar 

  • Shibata H, Sugawara O, Toyoshima H, Wondzell SM, Nakamura F, Kasahara T, Swanson FJ, Sasa K (2004) Nitrogen dynamics in the hyporheic zone of a forested stream during a small storm, Hokkaido, Japan. Biogeochemistry 69:83–104

    Article  CAS  Google Scholar 

  • Shibata H, Ozawa M, Satoh F, Sasa K (2007) The effect of treatment for land surface during forest practice on soil nitrogen dynamics (in Japanese with English summary). J Jpn For Soc 89:314–320

    Article  CAS  Google Scholar 

  • Shindo J, Okamoto K, Kawashima H (2006) Prediction of the environmental effects of excess nitrogen caused by increasing food demand with rapid economic growth in eastern Asian countries, 1961–2020. Ecol Model 193:703–720

    Article  Google Scholar 

  • Smil V (2002) Nitrogen and food production: proteins for human diets. Ambio 31:126–131

    PubMed  Google Scholar 

  • Stevens CJ, Dise NB, Moundford JO, Gowing DJ (2004) Impact of nitrogen deposition on the specie richness of grasslands. Science 303:1876–1879

    Article  PubMed  CAS  Google Scholar 

  • Stevens CJ, Dise NB, Gowing DJG, Mountford JO (2006) Loss of forb diversity in relation to nitrogen deposition in the UK: regional trends and potential controls. Global Change Biol 12:1823–1883

    Article  Google Scholar 

  • Stoddard JL (1994) Long-term changes in watershed retention of nitrogen, its causes and aquatic consequences. In: Baker AL (ed) Environmental chemistry of lakes and reservoirs. Am Chem Soc, Washington, DC, pp 223–284

    Google Scholar 

  • Suding KN, Collins SL, Gough L, Clark C, Cleland EE, Gross KL, Milchunas DG, Pennings S (2005) Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. Proc Natl Acad Sci USA 102:4387–4392

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Shoji S (2002) Distribution and classification of volcanic ash soils. Global Environ Res 6:83–97

    Google Scholar 

  • Takahashi T, Haibara K, Aiba Y, Toda H, Fukuda M (1995) Effects of weeds and weeding on nutrients dynamics in young stands (in Japanese with English summary). Jpn J For Environ 37:67–76

    Google Scholar 

  • Tateno R, Hishi T, Takeda H (2004) Above- and belowground biomass and net primary production in a cool temperate deciduous forest in relation to topographical changes in soil nitrogen. For Ecol Manage 193:297–306

    Article  Google Scholar 

  • Throop HL, Lerdau MT (2004) Effects of nitrogen deposition on insect herbivory: implications for community and ecosystem processes. Ecosystems 7:109–133

    Article  CAS  Google Scholar 

  • Tilman D, Knops J, Peter B, Ritchie M, Siemann E (1997) The influence of functional diversity and composition on ecosystem processes. Science 277:1300–1302

    Article  CAS  Google Scholar 

  • Tokuchi N, Takeda H, Yoshida K, Iwatsubo G (1999) Topographical variations in a plant-soil system along a slope on Mt. Ryuoh, Japan. Ecol Res 14:361–369

    Article  Google Scholar 

  • Tokuchi N, Hirobe M, Koba K (2000) Topographical differences in soil N transformation using 15N dilution method along a slope in a conifer plantation forest in Japan. J For Res 5:13–19

    Article  CAS  Google Scholar 

  • Török K, Szili-Kovács T, Halassy M, Tóth T, Zs Hayek, Paschke MW, Wardell LJ (2000) Immobilization of soil nitrogen as a possible method for the restoration of sandy grassland. Appl Veg Sci 3:7–14

    Article  Google Scholar 

  • Townsend AR, Braswell BH, Holland EA, Penner JE (1996) Spatial and temporal patterns in terrestrial carbon storage due to deposition of fossil fuel nitrogen. Ecol Appl 6:806–814

    Article  Google Scholar 

  • Urakawa R, Toda H, Haibara K (2007) Retardation of nitrogen leaching by the NO3 adsorption in the subsoil in a watershed of old Japanese cedar and cypress stands (in Japanese with English summary). J Jpn For Soc 89:190–199

    Article  CAS  Google Scholar 

  • van Dobben HF, van Hinsberg A, Schouwenberg EPAG, Jansen M, Mol-Dijkstra JP, Wieggers HJJ, Kros J, de Vries W (2006) Simulation of critical loads for nitrogen for terrestrial plant communities in the Netherlands. Ecosystems 9:32–45

    Article  CAS  Google Scholar 

  • Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry 13:87–115

    Article  Google Scholar 

  • Vitousek PM, Reiners WA (1975) Ecosystem succession and nutrient retention: a hypothesis. Bioscience 25:376–381

    Article  CAS  Google Scholar 

  • Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750

    Google Scholar 

  • Yanai RD (1998) The effect of whole-tree harvest on phosphorus cycling in a northern hardwood forest. For Ecol Manage 104:281–295

    Article  Google Scholar 

  • Zaccherio M, Finzi AC (2007) Atmospheric deposition may affect northern hardwood forest composition by altering soil nutrient supply. Ecol Appl 17:1929–1941

    Article  PubMed  Google Scholar 

  • Zak DR, Groffman PM, Pregitzer KS, Christensen S, Tiedje JM (1990) The vernal dam: plant-microbe competition for nitrogen in northern hardwood forests. Ecology 71:651–656

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the twenty-first Century Centers of Excellence Program (Environmental Risk Management for Bio/Eco-Systems), Global Centers of Excellence Program (Global Eco-Risk Management from Asian Viewpoints) and Grant-in-Aid for Scientific Research (C19570017), from the Ministry of Education, Science, Culture and Sports, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reiji Fujimaki.

About this article

Cite this article

Fujimaki, R., Sakai, A. & Kaneko, N. Ecological risks in anthropogenic disturbance of nitrogen cycles in natural terrestrial ecosystems. Ecol Res 24, 955–964 (2009). https://doi.org/10.1007/s11284-008-0578-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-008-0578-x

Keywords

Navigation