Skip to main content

Advertisement

Log in

Occurrence of PPCPs at a Wastewater Treatment Plant and in Soil and Groundwater at a Land Application Site

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Pharmaceuticals and personal care products (PPCPs) can reach soil and aquatic environments through land application of wastewater effluent and agricultural runoff. The objective of this research was to assess the fate of PPCPs at field scale. PPCPs were measured systematically in a wastewater treatment plant (WWTP), and in soil and groundwater receiving treated effluent from the WWTP. A land application site in West Texas was used as the study site; it has received treated wastewater effluent from the WWTP for more than 70 years in order to remove additional nutrients and irrigate non-edible crops. Target compounds (estrone, 17β-estradiol, estriol, 17α-ethynylestradiol, triclosan, caffeine, ibuprofen, and ciprofloxacin) in wastewater, sewage sludge, soil, and groundwater were determined using HPLC/UV with qualitative confirmatory analyses using GC/MS. Samples were collected quarterly over 12 months for wastewater and sludge samples and over 9 months for soil and groundwater samples. Results indicated that concentrations of PPCPs in wastewater influent, effluent, sludge solid phase, and sludge liquid phase were in the range of non-detected (ND)-183 μg/L, ND-83 μg/L, ND-19 μg/g, and ND-50 μg/L, respectively. Concentrations in soil and groundwater samples were in the range of ND-319 ng/g and ND-1,745 μg/L, respectively. GC/MS confirmation data were consistent with the results of HPLC/UV analyses. Overall, data indicate that PPCPs in the wastewater effluent from the WWTP transport both vertically and horizontally in the soil, and eventually reach groundwater following land application of the effluent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Allaire, S. E., Castillo, J. D., & Juneau, V. (2006). Sorption kinetics of chlortetracycline and tylosin on sandy loam and heavy clay soils. Journal of Environmental Quality, 35(4), 969–972.

    Article  CAS  Google Scholar 

  • Andersen, H., Siegrist, H., Halling-SØrensen, B., & Ternes, T. A. (2003). Fate of estrogens in a municipal sewage treatment plant. Environmental Science & Technology, 37(18), 4021–4026.

    Article  CAS  Google Scholar 

  • Andersen, H. R., Hansen, M., KjØlholt, J., Stuer-Lauridsen, F., Ternes, T., & Halling-SØrensen, B. (2005). Assessment of the importance of sorption for steroid estrogens removal during activated sludge treatment. Chemosphere, 61(1), 139–146.

    Article  CAS  Google Scholar 

  • Ankley, G. T., Brooks, B. W., Huggett, D. B., & Sumpter, J. P. (2007). Repeating history: pharmaceuticals in the environment. Environmental Science & Technology, 41(24), 8211–8217.

    Article  CAS  Google Scholar 

  • Aranami, K., & Readman, J. W. (2007). Photolytic degradation of triclosan in freshwater and seawater. Chemosphere, 66(6), 1052–1056.

    Article  CAS  Google Scholar 

  • Belden, J. B., Maul, J. D., & Lydy, M. J. (2007). Partitioning and photodegradation of ciprofloxacin in aqueous systems in the presence of organic matter. Chemosphere, 66(8), 1390–1395.

    Article  CAS  Google Scholar 

  • Bester, K. (2005). Fate of triclosan and triclosan-methyl in sewage treatment plants and surface waters. Archives of Environmental Contamination and Toxicology, 49(1), 9–17.

    Article  CAS  Google Scholar 

  • Boxall, A. B. A. (2008). Fate and transport of veterinary medicines in the soil environment. In D. S. Aga (Ed.), Fate of Pharmaceuticals in the Environment and in Water Treatment Systems (pp. 123–137). Florida: CRC.

    Google Scholar 

  • Buerge, I. J., Poiger, T., Müller, M. D., & Buser, H. R. (2003). Caffeine, an anthropogenic marker for wastewater contamination of surface waters. Environmental Science & Technology, 37(4), 691–700.

    Article  CAS  Google Scholar 

  • Cardoza, L. A., Knapp, C. W., Larive, C. K., Belden, J. B., Lydy, M., & Graham, D. W. (2005). Factors affecting the fate of ciprofloxacin in aquatic field systems. Water, Air, and Soil Pollution, 161(1–4), 383–398.

    Article  CAS  Google Scholar 

  • Casey, F. X. M., Šimůnek, J., Lee, J., Larsen, G. L., & Hakk, H. (2005). Sorption, mobility, and transformation of estrogenic hormones in natural soil. Journal of Environmental Quality, 34(4), 1372–1379.

    Article  CAS  Google Scholar 

  • Chenxi, W., Spongberg, A. L., & Witter, J. D. (2008). Determination of the persistence of pharmaceuticals in biosolids using liquid-chromatography tandem mass spectrometry. Chemosphere, 73(4), 511–518.

    Article  CAS  Google Scholar 

  • Christian, T., Schneider, R. J., Färber, H. A., Skutlarek, D., Meyer, M. T., & Goldbach, H. E. (2003). Determination of antibiotic residues in manure, soil, and surface waters. Acta Hydrochimica et Hydrobiologica, 31(1), 36–44.

    Article  CAS  Google Scholar 

  • Chu, S., & Metcalfe, C. D. (2007). Simultaneous determination of triclocarban and triclosan in municipal biosolids by liquid chromatography tandem mass spectrometry. Journal of Chromatography. A, 1164(1–2), 212–218.

    Article  CAS  Google Scholar 

  • Colucci, M. S., Bork, H., & Topp, E. (2001). Persistence of estrogenic hormones in agricultural soils: I. 17β-estradiol and estrone. Journal of Environmental Quality, 30(6), 2070–2076.

    Article  CAS  Google Scholar 

  • Cordy, G. E., Duran, N. L., Bouwer, H., Rice, R. C., Furlong, E. T., Zaugg, S. D., et al. (2004). Do pharmaceuticals, pathogens, and other organic waste water compounds persist when waste water is used for recharge? Ground Water Monitoring and Remediation, 24(2), 58–69.

    Article  CAS  Google Scholar 

  • D’Ascenzo, G., Di Corcia, A., Gentilli, A., Mancini, R., Mastropasqua, R., Nazzari, M., et al. (2003). The Science of the Total Environment, 302(1–3), 199–209.

    Article  Google Scholar 

  • Daughton, C. G., & Ternes, T. A. (1999). Pharmaceuticals and personal care products in the environment: agent of subtle change? Environmental Health Perspectives, 107(S6), 907–938.

    Article  CAS  Google Scholar 

  • Davis, M.L., & Cornwell, D.F. (1998). Introduction to Environmental Engineering (3rd Ed.). McGraw-Hill Higher Education. ISBN 0-07-015918-1.

  • Drillia, P., Stamatelatou, K., & Lyberatos, G. (2005). Fate and mobility of pharmaceuticals in solid matrices. Chemosphere, 60(8), 1034–1044.

    Article  CAS  Google Scholar 

  • EPA, U. S. (2000). SW846 test methods. Washington: USEPA.

    Google Scholar 

  • Gielen, G. J. H. P., Van Den Heuvel, M. R., Clinton, P. W., & Greenfield, L. G. (2009). Factors impacting on pharmaceutical leaching following sewage application to land. Chemosphere, 74(4), 537–542.

    Article  CAS  Google Scholar 

  • Giger, W., Alder, A. C., Golet, E. M., Kohler, H. P. E., McArdell, C. S., Molnar, E., et al. (2003). Occurrence and fate of antibiotics as trace contaminants in wastewaters, sewage sludges and surface waters. Chimia, 57(9), 485–491.

    Article  CAS  Google Scholar 

  • Glassmeyer, S. T., Kolpin, D. W., Furlong, E. T., & Focazio, M. J. (2008). Environmental presence and persistence of pharmaceuticals: An Overview. In D. S. Aga (Ed.), Fate of pharmaceuticals in the environment and in water treatment systems (pp. 3–51). Florida: CRC.

    Google Scholar 

  • Gross, B., Montgomery-Brown, J., Naumann, A., & Reinhard, M. (2004). Occurrence and fate of pharmaceuticals and alkylphenol ethoxylate metabolites in an effluent-dominated river and wetland. Environmental Toxicology and Chemistry, 23(9), 2074–2083.

    Article  CAS  Google Scholar 

  • Haggard, B. E., Galloway, J. M., Green, W. R., & Meyer, M. T. (2006). Pharmaceuticals and other organic chemicals in selected north-central and northwestern Arkansas streams. Journal of Environmental Quality, 35(4), 1078–1087.

    Article  CAS  Google Scholar 

  • Harrison, E. Z., Oakes, S. R., Hysell, M., & Hay, A. (2006). Organic chemicals in sewage sludges. The Science of the Total Environment, 367(2–3), 481–497.

    CAS  Google Scholar 

  • Heberer, T. (2002a). Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicology Letters, 131(1–2), 5–17.

    Article  CAS  Google Scholar 

  • Heberer, T. (2002b). Tracking persistent pharmaceutical residues from municipal sewage to drinking water. Journal of Hydrology, 266(3–4), 175–189.

    Article  CAS  Google Scholar 

  • Hildebrand, C., Londry, K. L., & Farenhorst, A. (2006). Sorption and desorption of three endocrine disrupters in soils. Journal of Environmental Science and Health. Part B, 41(6), 907–921.

    CAS  Google Scholar 

  • Holbrook, R. D., Novak, J. T., Grizzard, T. J., & Love, N. G. (2002). Estrogen receptor agonist fate during wastewater and biosolids treatment processes: a mass balance analysis. Environmental Science & Technology, 36(21), 4533–4539.

    Article  CAS  Google Scholar 

  • Jacobsen, A. M., Lorenzen, A., Chapman, R., & Topp, E. (2005). Persistence of testosterone and 17β-estradiol in soils receiving swine manure or municipal biosolids. Journal of Environmental Quality, 34(3), 861–871.

    Article  CAS  Google Scholar 

  • Karnjanapiboonwong, A., Morse, A. N., Maul, J. D., & Anderson, T. A. (2010). Sorption of estrogens, triclosan, and caffeine in a sandy loam and a silt loam soil. Journal of Soils and Sediments. doi:10.1007/s11368-010-0223-5.

    Google Scholar 

  • Kim, S., Weber, A. S., Batt, A., & Aga, D. S. (2008). Removal of pharmaceuticals in biological wastewater treatment plants. In D. S. Aga (Ed.), Fate of pharmaceuticals in the environment and in water treatment systems (pp. 349–361). Florida: CRC.

    Google Scholar 

  • Kinney, C. A., Furlong, E. T., Werner, S. L., & Cahill, J. D. (2006). Presence and distribution of wastewater-derived pharmaceuticals in soil irrigated with reclaimed water. Environmental Toxicology and Chemistry, 25(2), 317–326.

    Article  CAS  Google Scholar 

  • Kirk, L. A., Tyler, C. R., Lye, C. M., & Sumpter, J. P. (2002). Changes in estrogenic and androgenic activities at different stages of treatment in wastewater treatment works. Environmental Toxicology and Chemistry, 21(5), 972–979.

    Article  CAS  Google Scholar 

  • Kolpin, D. W., Furlong, E. T., Meyer, M. T., Thurman, E. M., Zaugg, S. D., Barber, L. B., et al. (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance. Environmental Science & Technology, 36(6), 1202–1211.

    Article  CAS  Google Scholar 

  • Kreuzinger, N., Clara, M., Strenn, B., & Kroiss, H. (2004). Relevance of the sludge retention time (SRT) as design criteria for wastewater treatment plants for the removal of endocrine disruptors and pharmaceuticals from wastewater. Water Science and Technology, 50(5), 149–156.

    CAS  Google Scholar 

  • Kreuzinger, N., Clara, M., Strenn, B., & Vogel, B. (2004). Investigation on the behaviour of selected pharmaceuticals in the groundwater after infiltration of treated wastewater. Water Science and Technology, 50(2), 221–228.

    CAS  Google Scholar 

  • Kümmerer, K. (2004). Pharmaceuticals in the environment: sources, fate, effects, and risk (2nd ed.). Berlin: Springer.

    Google Scholar 

  • Kvanli, D. M., Marisetty, S., Anderson, T. A., Jackson, W. A., & Morse, A. N. (2008). Monitoring estrogen compounds in wastewater recycling systems. Water, Air, and Soil Pollution, 188(1–4), 31–40.

    Article  CAS  Google Scholar 

  • Lee, H. B., Peart, T. E., & Svoboda, M. L. (2007). Determination of ofloxacin, norfloxacin, and ciprofloxacin in sewage by selective solid-phase extraction, liquid chromatography with fluorescence determination, and liquid chromatography-tandem mass spectrometry. Journal of Chromatography. A, 1139(1), 45–52.

    Article  CAS  Google Scholar 

  • Lin, A. Y. C., & Reinhard, M. (2005). Photodegradation of common environmental pharmaceuticals and estrogens in river water. Environmental Toxicology and Chemistry, 24(6), 1303–1309.

    Article  CAS  Google Scholar 

  • Machatha, S. G., & Yalkowsky, S. H. (2005). Comparison of the octanol/water partition coefficients calculated by ClogP®, ACDlogP and KowWin® to experimentally determined values. International Journal of Pharmaceutics, 294(1–2), 185–192.

    Article  CAS  Google Scholar 

  • Mansell, J., & Drewes, J. E. (2004). Fate of steroidal hormones during soil-aquifer treatment. Ground Water Monitoring and Remediation, 24(2), 94–101.

    Article  CAS  Google Scholar 

  • Mansell, J., Drewes, J. E., & Rauch, T. (2004). Removal mechanisms of endocrine disrupting compounds (steroids) during soil aquifer treatment. Water Science and Technology, 50(2), 229–237.

    CAS  Google Scholar 

  • Matamoros, V., Duhec, A., Albaigés, J., & Bayona, J. M. (2009). Photodegradation of carbamazepine, ibuprofen, ketoprofen, and 17α-ethinylestradiol (EE2) in fresh and seawater. Water, Air, and Soil Pollution, 196(1–4), 161–168.

    Article  CAS  Google Scholar 

  • Mazellier, P., Méité, L., & Laat, D. E. (2008). Photodegradation of the steroid hormones 17β-estradiol (E2) and 17α-ethinylestradiol (EE2) in dilute aqueous solution. Chemosphere, 73(8), 1216–1223.

    Article  CAS  Google Scholar 

  • McAvoy, D. C., Schatowitz, B., Jacob, M., Hauk, A., & Eckhoff, W. S. (2002). Measurement of triclosan in wastewater treatment systems. Environmental Toxicology and Chemistry, 21(7), 1323–1329.

    Article  CAS  Google Scholar 

  • Monteiro, S. C., & Boxall, A. B. (2009). Factors affecting the degradation of pharmaceuticals in agricultural soils. Environmental Toxicology and Chemistry, 28(12), 2546–2554.

    Article  CAS  Google Scholar 

  • Nakada, N., Tanishima, T., Shinohara, H., Kiri, K., & Takada, H. (2006). Pharmaceutical chemicals and endocrine disrupters in municipal wastewater in Tokyo and their removal during activated sludge treatment. Water Research, 40(17), 3297–3303.

    Article  CAS  Google Scholar 

  • Nakada, N., Kiri, K., Shinohara, H., Harada, A., Kuroda, K., Takizawa, S., et al. (2008). Evaluation of pharmaceuticals and personal care products as water-soluble molecular markers of sewage. Environmental Science & Technology, 42(17), 6347–6353.

    Article  CAS  Google Scholar 

  • Oppel, J., Broll, G., Löffler, D., Meller, M., Römbke, J., & Ternes, T. (2004). Leaching behavior of pharmaceuticals in soil-testing-systems: a part of an environmental risk assessment for groundwater protection. The Science of the Total Environment, 328(1–3), 265–273.

    CAS  Google Scholar 

  • Osenbrück, K., Gläser, H. R., Knöller, K., Weise, S. M., Möder, M., Wennrich, R., et al. (2007). Sources and transport of selected organic micropollutants in urban groundwater underlying the city of Halle (Saale), Germany. Water Research, 41(15), 3259–3270.

    Article  Google Scholar 

  • Overcash, M., Sims, R. C., Sims, J. L., & Nieman, J. K. C. (2005). Beneficial reuse of sustainability: the fate of organic compounds in land-applied waste. Journal of Environmental Quality, 34(1), 29–51.

    Article  CAS  Google Scholar 

  • Pedersen, J. A., Soliman, M., & Suffet, I. H. M. (2005). Human pharmaceuticals, hormones, and personal care product ingredients in runoff from agricultural fields irrigated with treated wastewater. Journal of Agricultural and Food Chemistry, 53(5), 1625–1632.

    Article  CAS  Google Scholar 

  • Phillips, G., Johnson, B. E., & Ferguson, J. (1990). The loss of antibiotic activity of ciprofloxacin by photodegradation. The Journal of Antimicrobial Chemotherapy, 26(6), 783–789.

    Article  CAS  Google Scholar 

  • Polar, J.A. (2007). The fate of pharmaceuticals after wastewater treatment. Florida Water Resources Journal, June, 26–31

  • Rodriguez-Mozaz, S., López de Alda, M. J., & Barceló, D. (2004). Monitoring of estrogens, pesticides and bisphenol A in natural waters and drinking water treatment plants by solid-phase extraction-liquid chromatography-mass spectrometry. Journal of Chromatography. A, 1045(1–2), 85–92.

    Article  CAS  Google Scholar 

  • Sangsupan, H. A., Radcliffe, D. E., Hartel, P. G., Jenkins, M. B., Vencill, W. K., & Cabrera, M. L. (2006). Sorption and transport of 17β-estradiol and testosterone in undisturbed soil columns. Journal of Environmental Quality, 35(6), 2261–2272.

    Article  CAS  Google Scholar 

  • Scheytt, T., Mersmann, P., Lindstädt, R., & Heberer, T. (2005). Determination of sorption coefficients of pharmaceutically active substances carbamazepine, diclofenac, and ibuprofen, in sandy sediments. Chemosphere, 60(2), 245–253.

    Article  CAS  Google Scholar 

  • Scheytt, T. J., Mersmann, P., & Heberer, T. (2006). Mobility of pharmaceuticals carbamazepine, diclofenac, ibuprofen, and propyphenazone in miscible-displacement experiments. Journal of Contaminant Hydrology, 83(1–2), 53–69.

    Article  CAS  Google Scholar 

  • Sedlak, D. L., & Pinkston, K. E. (2001). Factors affecting the concentrations of pharmaceuticals released to the aquatic environment. Water Resources Update, 120, 56–64.

    Google Scholar 

  • Snyder, S. A., Leising, J., Westerhoff, P., Yoon, Y., Mash, H., & Vanderford, B. (2004). Biological and physical attenuation of endocrine disruptors and pharmaceuticals: implications for water reuse. Ground Water Monitoring and Remediation, 24(2), 108–118.

    Article  CAS  Google Scholar 

  • Snyder, S. A., Lei, H., & Wert, E. C. (2008). Removal of endocrine disruptors and pharmaceuticals during water treatment. In D. S. Aga (Ed.), Fate of pharmaceuticals in the environment and in water treatment systems (pp. 229–259). Florida: CRC.

    Google Scholar 

  • Ternes, T., Bonerz, M., & Schmidt, T. (2001). Determination of neutral pharmaceuticals in wastewater and rivers by liquid chromatography-electrospray tandem mass spectrometry. Journal of Chromatography. A, 938(1–2), 175–185.

    Article  CAS  Google Scholar 

  • Thomas, P. M., & Foster, G. D. (2004). Determination of nonsteroidal anti-inflammatory drugs, caffeine, and triclosan in wastewater by gas chromatography-mass spectrometry. Journal of Environmental Science and Health Part A, 39(8), 1969–1978.

    Article  Google Scholar 

  • Thomas, P. M., & Foster, G. D. (2005). Tracking acidic pharmaceuticals, caffeine, and triclosan through the wastewater treatment process. Environmental Toxicology and Chemistry, 24(1), 25–30.

    Article  CAS  Google Scholar 

  • Thomas, A. T., Andersen, H., Gilberg, D., & Bonerz, M. (2002). Determination of estrogens in sludge and sediments by liquid extraction and GC/MS/MS. Analytical Chemistry, 74(14), 3498–3504.

    Article  Google Scholar 

  • Thompson, A., Griffin, P., Stuetz, R., & Cartmell, E. (2005). The fate and removal of triclosan during wastewater treatment. Water Environment Research, 77(1), 63–67.

    Article  CAS  Google Scholar 

  • Topp, E., Hendel, J., Lu, Z., & Chapman, R. (2006). Biodegradation of caffeine in agricultural soil. Canadian Journal of Soil Science, 86(3), 533–544.

    CAS  Google Scholar 

  • Uslu, M. Ö., Yediler, A., Balcioğlu, I. A., & Schulte-Hostede, S. (2008). Analysis and sorption behavior of fluoroquinolones in solid matrices. Water, Air, and Soil Pollution, 190(1–4), 55–63.

    Article  CAS  Google Scholar 

  • Waltman, E. L., Venables, B. J., & Waller, W. T. (2006). Triclosan in a North Texas wastewater treatment plant and the influent and effluent of an experimental constructed wetland. Environmental Toxicology and Chemistry, 25(2), 367–372.

    Article  CAS  Google Scholar 

  • Xu, J., Chen, W., Wu, L., Green, R., & Chang, A. C. (2009). Leachability of some emerging contaminants in reclaimed municipal wastewater-irrigated turf grass fields. Environmental Toxicology and Chemistry, 28(9), 1842–1850.

    Article  CAS  Google Scholar 

  • Xuan, R., Blassengale, A. A., & Wang, Q. (2008). Degradation of estrogenic hormones in a silt loam soil. Journal of Agricultural and Food Chemistry, 56(19), 9152–9158.

    Article  CAS  Google Scholar 

  • Ying, G. G., & Kookana, R. S. (2005). Sorption and degradation of estrogen-like-endocrine disrupting chemicals in soil. Environmental Toxicology and Chemistry, 24(10), 2640–2645.

    Article  CAS  Google Scholar 

  • Ying, G. G., & Kookana, R. S. (2007). Triclosan in wastewaters and biosolids from Australian wastewater treatment plants. Environment International, 33(2), 199–205.

    Article  CAS  Google Scholar 

  • Ying, G.G., Kookana, R., & Waite, T.D. (2004). Endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in reclaimed water in Australia. Australian water conservation and reuse research program. ISBN 0643091807

Download references

Acknowledgments

This study was partially funded by the Texas Water Resources Institute (TWRI) and the US EPA. Special thanks to individuals for assisting in sample collection and access to the WRP and the LAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd A. Anderson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karnjanapiboonwong, A., Suski, J.G., Shah, A.A. et al. Occurrence of PPCPs at a Wastewater Treatment Plant and in Soil and Groundwater at a Land Application Site. Water Air Soil Pollut 216, 257–273 (2011). https://doi.org/10.1007/s11270-010-0532-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0532-8

Keywords

Navigation