Skip to main content
Log in

Pollution Bioindicators: Statistical Analysis of a Case Study

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

In this paper a three-step procedure is proposed to deal with ecological data, usually very complex in their treatment. The three steps – exploratory, confirmatory, and modelling phases – reflect the different methodological approaches necessary in each phase of the study. To illustrate the methodology, a case study is proposed, concerning the suitability of plants as pollution bioindicators. Samples of differently aged Pinus pinea L. needles were collected throughout 1 year in three different locations, whose human disturbance was known to be different. In the samples some morphological and functional parameters were measured, whose relation with the stress was already known. The exploratory analysis suggested pollution with human origin, the needle’s age, and the environmental conditions as the main factors of influence of damage. The confirmatory analysis confirmed both site and age as main factors and occasionally the sampling date. On this basis, some models were estimated separately for each site: models that best described the damage as function of age resulted non-linear and some of them with seasonal fluctuations. As a result, whereas the models described well enough the pollution temporal variation, the difference of pollution in the sites was best described by the different values of the models parameters in the different sites. In short, different pollution conditions are described better by the damage trend than by the individual measures. The three-step procedure resulted of high utility in outlining the most interesting relations to investigate through the modelling, the opportunity to model the indicators variation along time separately for each site, and to introduce the seasonal variation in some models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. The climate data were kindly supplied by UCEA, Collegio Romano, Roma; the air pollution data were supplied for Roma by ISS Laboratorio Igiene Ambientale and for Civitavecchia by ENEL – Tor Valdaliga Nord.

References

  • Altieri, A., Del Caldo, L., & Manes, F. (1994). Micromorphology of epicuticular waxes in Pinus pinea L. needles in relation to season and pollution climate. European Journal of Forest Pathology, 24(2), 79–91.

    Article  Google Scholar 

  • Anderberg, M. R. (1973). Cluster analysis for applications. New York: Academic.

    Google Scholar 

  • Angelini, R., Manes, F., & Federico, R. (1990). Spatial and functional correlation between diamine-oxidase and peroxidase activities and their dependence upon de-etiolation and wounding in chick-pea stems. Planta, 182, 89–96.

    Article  CAS  Google Scholar 

  • Arabie, P., & Hubert, L. (1994). Cluster analysis in marketing research. In R. J. Bagozzi (Ed.) Advanced methods of marketing research (pp. 160–189). London: Blackwell.

    Google Scholar 

  • Baig, M. N., & Tranquillini, W. (1976). Studies on upper timberline: morphology and anatomy of Norway spruce (Picea abies) and stone pine (Pinus cembra) needles from various habitat conditions. Canadian Journal of Botany, 54, 1622–1632.

    Article  Google Scholar 

  • Benzécri, J. P. (1973–1982). L'analyse des données (2 volumes). Paris: Dunod.

    Google Scholar 

  • Birecka, H., Chaskes, M. J., & Goldstein, J. (1979). Peroxidase and senescence. Journal of Experimental Botany, 30(116), 565–573.

    Article  CAS  Google Scholar 

  • Calinski, T., & Harabász, J. (1974). A dendrite method for cluster analysis. Communications in Statistics, 3(1), 1–27.

    Google Scholar 

  • Camiz, S. (1991). Reflections on spaces relationships in ecological data analysis: Effects, problems, possible solutions. Coenoses, 6(1), 3–13.

    Google Scholar 

  • Camiz, S. (1993a). STATIS ordinations vs. the Juhász–Nagy models: The predictability of an exploratory tool. Abstracta Botanica, 17(1–2), 29–36.

    Google Scholar 

  • Camiz, S. (1993b). Computer assisted procedures for structuring community data. Coenoses, 8(2), 97–104.

    Google Scholar 

  • Camiz, S. (2001). Exploratory 2- and 3-way data analysis and applications. Lecture Notes of TICMI. http://www.emis.de/journals/TICMI/lnt/vol2/lecture.htm. Tbilisi University Press, vol. 2.

  • Camiz, S. (2005). The Guttman effect: Its interpretation and a new redressing method. Data Analysis Bulletin, 5, 7–34.

    Google Scholar 

  • Camiz, S., Altieri, A., & Manes, F. (1993). Effetti degli inquinanti atmosferici su aghi di Pinus pinea L. in ambiente naturale. In Statchem93 – Atti del Convegno su Statistica e Chemiometria per lo studio dell'ambiente. Università di Venezia, Società Italiana di Statistica.

  • Camussi, A., Möller, F., Ottaviano, E., & Sari Gorla, M. (1986). Metodi statistici per la sperimentazione biologica. Bologna: Zanichelli.

    Google Scholar 

  • Cape, J. N. (1988). Air pollutant effects on conifer leaf surfaces. In J. N. Cape, & P. Mathy (Eds.) Scientific basis of forest decline symptomatology. Air pollution report series of the environmental research, no. 15 (pp. 149–159). Bruxelles: CEC.

    Google Scholar 

  • Castillo, F. J. (1986). Extracellular peroxidases as markers of stress? In H. Greppin, C. Penel, & T. H. Gaspar (Eds.) Molecular and physiological aspects of plant peroxidases (pp. 419–430). Switzerland: Geneva.

    Google Scholar 

  • Crossley, A., & Fowler, D. (1986). The weathering of scots pine epicuticular wax in polluted and clean air. New Phytologist, 103, 207–218.

    Article  Google Scholar 

  • Diggle, P. J., Liang, K. Y., & Zieger, S. L. (1994). Analysis of longitudinal data. Oxford: Clarendon.

    Google Scholar 

  • Einot, I., & Gabriel, K. R. (1975). A study of the powers of several methods of multiple comparison. Journal of the American Statistical Association, 70, 351.

    Article  Google Scholar 

  • Escudero, A., Del Arco, J. M., Sanz, I. C., & Ayala, J. (1992). Effects of leaf longevity and retranslocation efficiency on the retention of nutrients in the leaf biomass of different woody species. Oecologia, 90, 80–87.

    Article  Google Scholar 

  • Federico, R., Bruno, F., & Manes, F. (1986). Ion distribution in maize seedlings. Annali di Botanica, 44, 155–161.

    Google Scholar 

  • Gallant, A. R. (1975). Nonlinear regression. The American Statistician, 29, 73–81.

    Article  Google Scholar 

  • Gordon, A. D. (1999). Classification. London, UK: Chapman and Hall.

    Google Scholar 

  • Guttman, L. (1953). A note on Sir Cyril Burt’s factorial analysis of qualitative data. British Journal of Statistical Psychology, 6, 21–24.

    Google Scholar 

  • Huisman, J., Olff, H., & Fresco, L. F. M. (1993). A hierarchical set of models for species response analysis. Vegetatio, 4(1), 37–46.

    Article  Google Scholar 

  • Kennedy, W. J., & Gentle, J. E. (1980). Statistical computing. New York: Marcel Dekker.

    Google Scholar 

  • Kolmogorov, A. N. (1933). Grundbegriffe der Wahrscheinlichkeitsrechnung. Berlin: Springer.

    Google Scholar 

  • Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. Journal of the American Statistics Associaiton, 47, 583–621.

    Article  Google Scholar 

  • Lebart, L., Morineau, A., & Warwick, K. M. (1984). Multivariate descriptive statistical analysis: correspondence analysis and related techniques for large matrices. New York: Wiley.

    Google Scholar 

  • Lebart, L., Morineau, A., Lambert, T., & Pleuvret, P. (1991). SPAD.N – Manuel de référence. Paris: CISIA.

    Google Scholar 

  • Legendre, L., & Legendre, P. (1983). Numerical ecology. Amsterdam: Elsevier.

    Google Scholar 

  • Legge, A. H., Bogner, J. C., & Krupa, S. V. (1988). Foliar sulphur species in tine: A new indicator of a forest ecosystem under air pollution stress. Environmental Pollution, 55, 15–27.

    Article  CAS  Google Scholar 

  • Levene, H. (1960). Robust tests for the equality of variance. In I. Olkin (Ed.) Contributions to probability and statistics (pp. 278–292). Palo Alto, CA: Stanford University Press.

    Google Scholar 

  • Lichtenthaler, H. K. (1998). The stress concept in plants: An introduction. Annals of the New York Academy of Sciences, 851(1), 187–198.

    Article  CAS  Google Scholar 

  • Lindman, H. R. (1974). Analysis of variance in complex experimental designs. San Francisco: Freeman.

    Google Scholar 

  • Manes, F., Altieri, A., Angelini, R., Bruno, F., Cortiello, M., Del Caldo, L., et al. (1988). Micromorphological and biochemical changes in Pinus pinea L., Pinus pinaster Aiton, Nicotiana tabacum L. in relation to atmospheric pollutants. In J. N. Cape, & P. Mathy (Eds.) Scientific basis of forest decline symptomatology. Air pollution report series of the environmental research, no. 15 (pp. 342–353). Bruxelles: CEC.

    Google Scholar 

  • Manes, F., Altieri, A., Boffa, A., Bruno, F., & Federico, R. (1987). Early diagnosis of injuries in Pinus pinaster Aiton treated with simulated acid rain. Annali di Botanica, 45, 17–25.

    Google Scholar 

  • Manes, F., Federico, R., Cortiello, M., & Angelini, R. (1990). Ozone induced increase of peroxidase activity in tobacco (Nicotiana tabacum L. cv. Burley) leaves. Phytopathologia Mediterranea, 29, 101–106.

    CAS  Google Scholar 

  • Manes, F., Grignetti, A., Tinelli, A., Lenz, R., & Ciccioli, P. (1997). General features of the Castelporziano test site. Atmospheric Environment, 31(51), 19–25.

    Article  CAS  Google Scholar 

  • Mann, H. B., & Whitney, D. R. (1947). On a test of whether one of two random variables is stochastically larger than the other. Annals of Mathematical Statistics, 18, 50–60.

    Article  Google Scholar 

  • McQueen, J. B. (1967). Some methods for classification and analysis of multivariate observations. In Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297. Berkeley: University of California.

  • Miller Jr., R. G. (1981). Simultaneous statistical inference. New York: Springer Verlag.

    Google Scholar 

  • Milligan, G. W., & Cooper, M. (1985). An examination of procedures for determining the number of clusters in a data set. Psychometrika, 50, 159–179.

    Article  Google Scholar 

  • Mood, A. M., Graybill, F. A., & Boes, D. C. (1974). Introduction to the theory of statistics. New York: McGraw-Hill.

    Google Scholar 

  • Orlóci, L. (1978). Multivariate analysis in vegetation research. The Hague: Junk.

    Google Scholar 

  • Pillar, V. D. (1999). How sharp are classifications? Ecology, 80(8), 2508–2516.

    Article  Google Scholar 

  • Pillar, V. D., & Orlóci, L. (1996). On randomization testing in vegetation science: Multifactor comparisons of Relevé groups. Journal of Vegetation Science, 7, 585–592.

    Article  Google Scholar 

  • SAS (1987). SAS/STAT guide for personal computers. Cary, NC: SAS Institute.

    Google Scholar 

  • Scheffé, H. (1959). The analysis of variance. New York: Wiley.

    Google Scholar 

  • Treshow, M. (1984). Air pollution and plant life. Chichester: Wiley.

    Google Scholar 

  • Tukey, J. W. (1953). The problem of multiple comparisons. Princeton: Princeton University Press.

    Google Scholar 

  • Turunen, M., & Huttunen, S. (1990). A revue of the response of epicuticular wax of conifer needles to air pollution. Journal of Environmental Quality, 19, 35–45.

    Article  CAS  Google Scholar 

  • Van Loon, L. C. (1986). The significance of changes in peroxidase in diseased plants. In H. Greppin, C. Penel, & TH. Gaspar (Eds.) Molecular and physiological aspects of plant peroxidase (pp. 405–418). Genêve: Imprimierie Nationale.

    Google Scholar 

  • Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58, 236–144.

    Article  Google Scholar 

  • Whittaker, R. H. (Ed.) (1967). Handbook of vegetation science – Part V: Ordination and Classification of Vegetation. The Hague: Junk.

    Google Scholar 

Download references

Acknowledgements

Both development and revision of this paper were carried out by the first author in the frame of his grant by the Facoltà d’Architettura ValleGiulia of Sapienza Università di Roma. In addition, he wishes to acknowledge the encouragement and the suggestions given by Valério D. Pillar during a visit to his Departmento de Ecología, in the framework of a bilateral agreement between Sapienza and Universidade Federal do Rio Grande do Sul (Porto Alegre, Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Camiz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camiz, S., Altieri, A. & Manes, F. Pollution Bioindicators: Statistical Analysis of a Case Study. Water Air Soil Pollut 194, 111–139 (2008). https://doi.org/10.1007/s11270-008-9702-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9702-3

Keywords

Navigation