Skip to main content
Log in

A comparative analysis on the synonymous codon usage pattern in viral functional genes and their translational initiation region of ASFV

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

The synonymous codon usage pattern of African swine fever virus (ASFV), the similarity degree of the synonymous codon usage between this virus and some organisms and the synonymous codon usage bias for the translation initiation region of viral functional genes in the whole genome of ASFV have been investigated by some simply statistical analyses. Although both GC12% (the GC content at the first and second codon positions) and GC3% (the GC content at the third codon position) of viral functional genes have a large fluctuation, the significant correlations between GC12 and GC3% and between GC3% and the first principal axis of principle component analysis on the relative synonymous codon usage of the viral functional genes imply that mutation pressure of ASFV plays an important role in the synonymous codon usage pattern. Turning to the synonymous codon usage of this virus, the codons with U/A end predominate in the synonymous codon family for the same amino acid and a weak codon usage bias in both leading and lagging strands suggests that strand compositional asymmetry does not take part in the formation of codon usage in ASFV. The interaction between the absolute codon usage bias and GC3% suggests that other selections take part in the formation of codon usage, except for the mutation pressure. It is noted that the similarity degree of codon usage between ASFV and soft tick is higher than that between the virus and the pig, suggesting that the soft tick plays a more important role than the pig in the codon usage pattern of ASFV. The translational initiation region of the viral functional genes generally have a strong tendency to select some synonymous codons with low GC content, suggesting that the synonymous codon usage bias caused by translation selection from the host takes part in modulating the translation initiation efficiency of ASFV functional genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. C.A. Mebus, Adv. Virus Res. 35, 251–269 (1988)

    Article  CAS  PubMed  Google Scholar 

  2. R. Blasco, M. Aguero, J.M. Almendral, E. Vinuela, Virology 168, 330–338 (1989)

    Article  CAS  PubMed  Google Scholar 

  3. S.B. Kleiboeker, G.A. Scoles, Anim. Health Res. Rev. 2, 121–128 (2001)

    CAS  PubMed  Google Scholar 

  4. F. Almazan, J.M. Rodriguez, G. Andres, R. Perez, E. Vinuela, J.F. Rodriguez, J. Virol. 66, 6655–6667 (1992)

    CAS  PubMed  Google Scholar 

  5. J.M. Almendral, F. Almazan, R. Blasco, E. Vinuela, J. Virol. 64, 2064–2072 (1990)

    CAS  PubMed  Google Scholar 

  6. I. de la Vega, E. Vinuela, R. Blasco, Virology 179, 234–246 (1990)

    Article  PubMed  Google Scholar 

  7. S. Gonzalez, C. Mendoza, J.M. Sanchez-Vizcaino, F. Alonso, Vet. Immunol. Immunopathol. 26, 71–80 (1990)

    Article  CAS  PubMed  Google Scholar 

  8. T. Yozawa, G.F. Kutish, C.L. Afonso, Z. Lu, D.L. Rock, Virology 202, 997–1002 (1994)

    Article  CAS  PubMed  Google Scholar 

  9. C. Carrillo, M.V. Borca, C.L. Afonso, D.V. Onisk, D.L. Rock, J. Virol. 68, 580–583 (1994)

    CAS  PubMed  Google Scholar 

  10. D.E. Detray, Am. J. Vet. Res. 18, 811–816 (1957)

    CAS  PubMed  Google Scholar 

  11. W.P. Heuschele, L. Coggins, Bull. Epizoot. Dis. Afr. 17, 179–183 (1969)

    CAS  PubMed  Google Scholar 

  12. S.B. Kleiboeker, G.F. Kutish, J.G. Neilan, Z. Lu, L. Zsak, D.L. Rock, J. Gen. Virol. 79(Pt 5), 1189–1195 (1998)

    CAS  PubMed  Google Scholar 

  13. H. Akashi, Gene 205, 269–278 (1997)

    Article  CAS  PubMed  Google Scholar 

  14. F. Bagnoli, P. Lio, J. Theor. Biol. 173, 271–281 (1995)

    Article  CAS  PubMed  Google Scholar 

  15. M. Bulmer, Genetics 129, 897–907 (1991)

    CAS  PubMed  Google Scholar 

  16. A. Pan, C. Dutta, J. Das, Gene 215, 405–413 (1998)

    Article  CAS  PubMed  Google Scholar 

  17. P.M. Sharp, W.H. Li, J. Mol. Evol. 24, 28–38 (1986)

    Article  CAS  PubMed  Google Scholar 

  18. E.H. Wong, D.K. Smith, R. Rabadan, M. Peiris, L.L. Poon, BMC Evol. Biol. 10, 253 (2010)

    Article  PubMed  Google Scholar 

  19. A. Canals, F. Alonso, J. Tomillo, J. Dominguez, Vet. Microbiol. 33, 117–127 (1992)

    Article  CAS  PubMed  Google Scholar 

  20. I. Casal, L. Enjuanes, E. Vinuela, J. Virol. 52, 37–46 (1984)

    CAS  PubMed  Google Scholar 

  21. L. Enjuanes, A.L. Carrascosa, E. Vinuela, J. Gen. Virol. 32, 479–492 (1976)

    Article  CAS  PubMed  Google Scholar 

  22. A. Gonzalez, V. Calvo, F. Almazan, J.M. Almendral, J.C. Ramirez, I. de la Vega, R. Blasco, E. Vinuela, J. Virol. 64, 2073–2081 (1990)

    CAS  PubMed  Google Scholar 

  23. A. Brun, C. Rivas, M. Esteban, J.M. Escribano, C. Alonso, Virology 225, 227–230 (1996)

    Article  CAS  PubMed  Google Scholar 

  24. M.L. Nogal, G. Gonzalez de Buitrago, C. Rodriguez, B. Cubelos, A.L. Carrascosa, M.L. Salas, Y. Revilla, J. Virol. 75, 2535–2543 (2001)

    Article  CAS  PubMed  Google Scholar 

  25. C.A. Oura, P.P. Powell, R.M. Parkhouse, J. Gen. Virol. 79(Pt 6), 1427–1438 (1998)

    CAS  PubMed  Google Scholar 

  26. Y. Revilla, A. Cebrian, E. Baixeras, C. Martinez, E. Vinuela, M.L. Salas, Virology 228, 400–404 (1997)

    Article  CAS  PubMed  Google Scholar 

  27. C.I. Rodriguez, M.L. Nogal, A.L. Carrascosa, M.L. Salas, M. Fresno, Y. Revilla, J. Virol. 76, 3936–3942 (2002)

    Article  CAS  PubMed  Google Scholar 

  28. L.K. Dixon, C.C. Abrams, G. Bowick, L.C. Goatley, P.C. Kay-Jackson, D. Chapman, E. Liverani, R. Nix, R. Silk, F. Zhang, Vet. Immunol. Immunopathol. 100, 117–134 (2004)

    Article  CAS  PubMed  Google Scholar 

  29. A.G. Granja, M.L. Nogal, C. Hurtado, C. Del Aguila, A.L. Carrascosa, M.L. Salas, M. Fresno, Y. Revilla, J Immunol 176, 451–462 (2006)

    CAS  PubMed  Google Scholar 

  30. J.E. Miskin, C.C. Abrams, L.K. Dixon, J. Virol. 74, 9412–9420 (2000)

    Article  CAS  PubMed  Google Scholar 

  31. F.J. Salguero, S. Gil, Y. Revilla, C. Gallardo, M. Arias, C. Martins, Vet. Immunol. Immunopathol. 124, 107–119 (2008)

    Article  CAS  PubMed  Google Scholar 

  32. Y. Nakamura, T. Gojobori, T. Ikemura, Nucleic Acids Res. 28, 292 (2000)

    Article  CAS  PubMed  Google Scholar 

  33. F. Wright, Gene 87, 23–29 (1990)

    Article  CAS  PubMed  Google Scholar 

  34. H. Ohno, H. Sakai, T. Washio, M. Tomita, Gene 276, 107–115 (2001)

    Article  CAS  PubMed  Google Scholar 

  35. J.H. Zhou, J. Zhang, H.T. Chen, L.N. Ma, Y.Z. Ding, Z. Pejsak, Y.S. Liu, Infect. Genet. Evol. 11, 1815–1819 (2011)

    Article  CAS  PubMed  Google Scholar 

  36. S.K. Gupta, T.C. Ghosh, Gene 273, 63–70 (2001)

    Article  CAS  PubMed  Google Scholar 

  37. S. Das, S. Paul, C. Dutta, Virus Res. 117, 227–236 (2006)

    Article  CAS  PubMed  Google Scholar 

  38. L. Duret, Curr. Opin. Genet. Dev. 12, 640–649 (2002)

    Article  CAS  PubMed  Google Scholar 

  39. I. Bahir, M. Fromer, Y. Prat, M. Linial, Mol. Syst. Biol. 5, 311 (2009)

    Article  PubMed  Google Scholar 

  40. S. Karlin, J. Mrazek, J. Mol. Biol. 262, 459–472 (1996)

    Article  CAS  PubMed  Google Scholar 

  41. H. Romero, A. Zavala, H. Musto, Nucleic Acids Res. 28, 2084–2090 (2000)

    Article  CAS  PubMed  Google Scholar 

  42. J.W. Drake, J.J. Holland, Proc. Natl. Acad. Sci. USA 96, 13910–13913 (1999)

    Article  CAS  PubMed  Google Scholar 

  43. R.J. Nix, C. Gallardo, G. Hutchings, E. Blanco, L.K. Dixon, Arch. Virol. 151, 2475–2494 (2006)

    Article  CAS  PubMed  Google Scholar 

  44. K.J. Sumption, G.H. Hutchings, P.J. Wilkinson, L.K. Dixon, J. Gen. Virol. 71(Pt 10), 2331–2340 (1990)

    Article  CAS  PubMed  Google Scholar 

  45. L. Zsak, Z. Lu, T.G. Burrage, J.G. Neilan, G.F. Kutish, D.M. Moore, D.L. Rock, J. Virol. 75, 3066–3076 (2001)

    Article  CAS  PubMed  Google Scholar 

  46. T.G. Burrage, Z. Lu, J.G. Neilan, D.L. Rock, L. Zsak, J. Virol. 78, 2445–2453 (2004)

    Article  CAS  PubMed  Google Scholar 

  47. R.J. Rowlands, M.M. Duarte, F. Boinas, G. Hutchings, L.K. Dixon, Virology 393, 319–328 (2009)

    Article  CAS  PubMed  Google Scholar 

  48. B.P. Cormack, G. Bertram, M. Egerton, N.A. Gow, S. Falkow, A.J. Brown, Microbiology 143(Pt 2), 303–311 (1997)

    Article  CAS  PubMed  Google Scholar 

  49. C.H. Kim, Y. Oh, T.H. Lee, Gene 199, 293–301 (1997)

    Article  CAS  PubMed  Google Scholar 

  50. T. Mirzabekov, N. Bannert, M. Farzan, W. Hofmann, P. Kolchinsky, L. Wu, R. Wyatt, J. Sodroski, J. Biol. Chem. 274, 28745–28750 (1999)

    Article  CAS  PubMed  Google Scholar 

  51. P.M. Sharp, K.M. Devine, Nucleic Acids Res. 17, 5029–5039 (1989)

    Article  CAS  PubMed  Google Scholar 

  52. M. Uchijima, A. Yoshida, T. Nagata, Y. Koide, J Immunol 161, 5594–5599 (1998)

    CAS  PubMed  Google Scholar 

  53. G. Zhang, V. Gurtu, S.R. Kain, Biochem. Biophys. Res. Commun. 227, 707–711 (1996)

    Article  CAS  PubMed  Google Scholar 

  54. M. Welch, A. Villalobos, C. Gustafsson, J. Minshull, J. R. Soc. Interface 6(Suppl 4), S467–S476 (2009)

    Article  CAS  PubMed  Google Scholar 

  55. G.T. Chen, M. Inouye, Genes Dev. 8, 2641–2652 (1994)

    Article  CAS  PubMed  Google Scholar 

  56. A. Eyre-Walker, M. Bulmer, Nucleic Acids Res. 21, 4599–4603 (1993)

    Article  CAS  PubMed  Google Scholar 

  57. C.M. Stenstrom, E. Holmgren, L.A. Isaksson, Gene 273, 259–265 (2001)

    Article  CAS  PubMed  Google Scholar 

  58. C.M. Stenstrom, H. Jin, L.L. Major, W.P. Tate, L.A. Isaksson, Gene 263, 273–284 (2001)

    Article  CAS  PubMed  Google Scholar 

  59. E.B. Vervoort, A. van Ravestein, N.N. van Peij, J.C. Heikoop, P.J. van Haastert, G.F. Verheijden, M.H. Linskens, Nucleic Acids Res. 28, 2069–2074 (2000)

    Article  CAS  PubMed  Google Scholar 

  60. T. Tuller, Y.Y. Waldman, M. Kupiec, E. Ruppin, Proc. Natl. Acad. Sci. USA 107, 3645–3650 (2010)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in parts by grants International Science & Technology Cooperation Program of China (No. 2010DFA32640 and No. 2012DFG31890) and Gansu Provincial Funds for Distinguished Young Scientists. This study was also supported by the National Natural Science foundation of China (No. 31172335 and No. 31072143).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zygmunt Pejsak or Yong-sheng Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 84 kb)

Fig. S1

The usage bias of synonymous codons for Ala in different length (the first 5 codons, the first 10 codons, the first 15 codons, the first 20 codons, the first 25 codons, and the first 30 codons) of the translation initiation region (the first 30 codons) in the functional genes of ASFV genome (TIFF 32 kb)

Fig. S2

The preference of synonymous codons for Asp, Glu, and Cys in different length (the first 5 codons, the first 10 codons, the first 15 codons, the first 20 codons, the first 25 codons, and the first 30 codons) of the translation initiation region (the first 30 codons) in the functional genes of ASFV genome (TIFF 33 kb)

Fig. S3

The preference of synonymous codons for Phe, Tyr, and His in different length (the first 5 codons, the first 10 codons, the first 15 codons, the first 20 codons, the first 25 codons, and the first 30 codons) of the translation initiation region (the first 30 codons) in the functional genes of ASFV genome (TIFF 33 kb)

Fig. S4

The preference of synonymous codons for Gly in different length (the first 5 codons, the first 10 codons, the first 15 codons, the first 20 codons, the first 25 codons, and the first 30 codons) of the translation initiation region (the first 30 codons) in the functional genes of ASFV genome (TIFF 31 kb)

Fig. S5

The preference of synonymous codons for Leu in different length (the first 5 codons, the first 10 codons, the first 15 codons, the first 20 codons, the first 25 codons, and the first 30 codons) of the translation initiation region (the first 30 codons) in the functional genes of ASFV genome (TIFF 33 kb)

Fig. S6

The preference of synonymous codons for Pro in different length (the first 5 codons, the first 10 codons, the first 15 codons, the first 20 codons, the first 25 codons, and the first 30 codons) of the translation initiation region (the first 30 codons) in the functional genes of ASFV genome (TIFF 31 kb)

Fig. S7

The preference of synonymous codons for Gln, Asn, and Lys in different length (the first 5 codons, the first 10 codons, the first 15 codons, the first 20 codons, the first 25 codons, and the first 30 codons) of the translation initiation region (the first 30 codons) in the functional genes of ASFV genome (TIFF 32 kb)

Fig. S8

The preference of synonymous codons for Arg in different length (the first 5 codons, the first 10 codons, the first 15 codons, the first 20 codons, the first 25 codons, and the first 30 codons) of the translation initiation region (the first 30 codons) in the functional genes of ASFV genome (TIFF 32 kb)

Fig. S9

The preference of synonymous codons for Ser in different length (the first 5 codons, the first 10 codons, the first 15 codons, the first 20 codons, the first 25 codons, and the first 30 codons) of the translation initiation region (the first 30 codons) in the functional genes of ASFV genome (TIFF 33 kb)

Fig. S10

The preference of synonymous codons for Thr in different length (the first 5 codons, the first 10 codons, the first 15 codons, the first 20 codons, the first 25 codons, and the first 30 codons) of the translation initiation region (the first 30 codons) in the functional genes of ASFV genome (TIFF 30 kb)

Fig. S11

The preference of synonymous codons for Val in different length (the first 5 codons, the first 10 codons, the first 15 codons, the first 20 codons, the first 25 codons, and the first 30 codons) of the translation initiation region (the first 30 codons) in the functional genes of ASFV genome (TIFF 31 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Jh., Gao, Zl., Sun, Dj. et al. A comparative analysis on the synonymous codon usage pattern in viral functional genes and their translational initiation region of ASFV. Virus Genes 46, 271–279 (2013). https://doi.org/10.1007/s11262-012-0847-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-012-0847-1

Keywords

Navigation