Skip to main content
Log in

Leaf patterns, leaf size and ecologically related traits in high Mediterranean mountain on the Moroccan High Atlas

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Leaf traits functional relationship is particularly important in plant ecological strategies, but few data are available from Mediterranean high-altitude environments. We analysed leaf general patterns and leaf trait relationships in 84 perennial species on the High Atlas, Morocco. We examined the correlation amongst leaf size, leaf width and length, plant height and seed size, analysed multi-trait relationships using Structural Equation Models and tested leaf size variation amongst growth forms (functional groups). Species spanned 103 range of leaf size (sub-lepto- to microphylls). Nanophylls (48.8%) were dominant and over-represented in half-shrubs. Tree and rosette herbs were more likely to have large leaf size (nano-micro- and microphylls), whereas shrubs have medium leaf size (nano-micro- and nanophylls) and cushion and half-shrubs have small (sub-lepto- to nanophylls) and narrow leaves. Small-leaved species synchronized their leaf phenological activity with the dry summer months (May–August), and large-leaved species extended throughout the spring until the end of summer following the similar patterns found in lowland Mediterranean environments. Regarding woody species, our results showed a positive and significant relationship between leaf size and plant height and a non-significant relationship between leaf size and seed size. Structural Equation Models showed that variation in leaf size was triggered chiefly by changes in leaf form (leaf width) and plant height, seed size being of no relevance. In our study area, large-seeded species have a relatively wide range of leaf size. The hypothesis that the combination of large seeds and small leaves is allometrically unlikely (except for leptophyll Conifers) was supported in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ackerly DD, Knight CA, Weiss SB, Barton K, Starmer KP (2002) Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses. Oecologia 130:449–457

    Article  Google Scholar 

  • Ackrley DD, Donoghue MJ (1998) Leaf size, sapling allometry, and Corner’s rules: a phylogenetic study of correlated evolution in maples (Acer). Am Nat 152:767–791

    Article  Google Scholar 

  • Ackrley DD, Reich PB (1999) Convergence and correlations among leaf size and function in seed plants: a comparative test using independent contrasts. Am J Bot 86(9):1272

    Article  Google Scholar 

  • AEFCS (1996) Plan Directeur des aires Protégées du Maroc. Adm Gén Eaux et Forêts et Cons Sols 1-5 BCEOM-SECA

  • Bollen KA, Stine RA (1992) Bootstrapping goodness-of-fit measures in structural equation models. Sociol Method Res 21:205–229

    Article  Google Scholar 

  • Box EO (1981) Macroclimate and plant forms: an introduction to predictive modelling in phytogeography, Tasks for vegetation science 1. Dr. W. Junk Publishers, The Hague

    Google Scholar 

  • Braun Blanquet J (1979) Fitosociología. Bases para el esudio de las comunidades vegetales. Ediciones Blume, Madrid

    Google Scholar 

  • Bremer B, Bremer K, Chase MW et al (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121

    Article  Google Scholar 

  • Brouat C, Gibernau M, Amsellem L, McKey D (1998) Corner’s rules revisited: ontogenetic and interspecific patterns in leaf-stem allometry. New Phytol 139:459–470

    Article  Google Scholar 

  • Cabezudo B, Navarro T, Pérez-Latorre AV, Nieto Caldera JM, Orshan G (1992) Estudio fenomorfológico en la vegetación del sur de España. I. Cistus L. Acta Bot Malacitana 17:229–237

    Google Scholar 

  • Cabezudo B, Pérez-Latorre AV, Navarro T, Nieto-Caldera JM (1993) Estudio fenomorfológico en la vegetación del sur de España. II. Alcornocales Mesomediterráneos Montes de Málaga, Málaga. Acta Bot. Malacitana 18:179–188

    Google Scholar 

  • Castro J, Zamora R, Hódar JA, Gómez JM (2005) Alleviation of summer drought boosts establishment success of Pinus sylvestris in a Mediterranean Mountain: an experimental approach. Plant Ecol 181(2):191–202

    Article  Google Scholar 

  • Castro-Díez P, Milla R, Sanz V (2005) Phenological comparison between two coexisting Mediterranean woody species differing in life form. Flora 200:88–95

    Google Scholar 

  • Cornelissen JHC (1999) A triangular relationship between leaf size and size among woody species: allometry, ontogeny, ecology and taxonomy. Oecologia 118:248–255

    Article  Google Scholar 

  • Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003) A handbook of protocols for standardized and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380

    Article  Google Scholar 

  • Corner EJH (1949) The durian theory and the origin of the modern tree. Ann Bot 13:367–414

    Google Scholar 

  • Cowling RM, Campbell BM (1980) Convergence in vegetation structure in the Mediterranean communities of California, Chile and South Africa. Plant Ecol 43:191–197

    Article  Google Scholar 

  • Cronbach LJ (1951) Coefficient Alpha and the internal structure of test. Psychometrika 16:297–334

    Article  Google Scholar 

  • De Lillis M, Fontanella A (1992) Comparative phenology and growth in different species of the Mediterranean maquis of central Italy. Plant Ecol 99–100(1):83–96

    Article  Google Scholar 

  • Devillers P, Devillers-Terschuren J, Van der Linden C (2001) Palaearctic habitats. PHYSIS Data Base. last updated 1999

  • Díaz Barradas MC, Zunzunegui M, Tirado R, Ain-Lhout F, García Novo F (1999) Plant functional types: an ecosystem function in a Mediterranean shrubland. J Veg Sci 10:709–716

    Article  Google Scholar 

  • Díaz S, Cabido M (1997) Plant functional types and ecosystem function in relation to global change. J Veg Sci 8:463–474

    Google Scholar 

  • Díaz S, Lavorel S, De Bello F, Quétier F, Grigulis K, Robson M (2007) Incorporating plant functional diversity effects in ecosystem service assessments. Proc Natl Acad Sci USA 104(52):20684–20689

    Article  PubMed  Google Scholar 

  • Dolph GE, Dilcher DL (1980) Variation in leaf size with respect to climate in Costa Rica. Biotropica 12:1–99

    Article  Google Scholar 

  • Donald PGM, Fonseca CR, McC Overton, Westoby M (2003) Leaf-size divergence along rainfall and soil-nutrient gradients: is the method of size reduction common among clades? Funct Ecol 17:50–57

    Article  Google Scholar 

  • Ehleringer J (1984) Ecology and ecophysiology of leaf pubescence in North American desert plants. In: Rodriguez E, Healey PL, Mehta I (eds) Biology and chemistry of plant trichomes. Plenum Press, New York, pp 113–132

    Google Scholar 

  • Fennane M, Ibn Tattou M, Mathez J, Ouyahya A, El Oualidi J (1999–2007) Flore Pratique du Maroc. Trav Inst Sci Ser Bot 38(1–2)

  • Fennane M, Benabid A (1994) Connaissances sur la végétation du Maroc: phytogéographie, phytosociologie et séries de végétation. Lazaroa 14:21–97

    Google Scholar 

  • Finckh M (2006) Klima- und Landnutzungsgetriebene Dynamik von Vegetationsmustern in Südmarokko. Ber Reinh Tüxen-Ges 18:83–99

    Google Scholar 

  • Finckh M, Staudinger M (2002) Mikro-und makroskalige Ansätze zu einer Vegetationsgliederung des Drâa- Einzugsgebietes (Südmarokko). Ber Reinh Tüxen Ges 14:81–92

    Google Scholar 

  • Fonseca CR, Overton JM, Collins B, Westoby M (2000) Shifts in trait-combinations along rainfall and phosphorus gradients. J Ecol 88:964–977

    Article  Google Scholar 

  • Garnier E, Laurent G, Bellmann A, Debain S, Berthelier P, Ducout B, Roumet C, Navas ML (2001) Consistency of species ranking based on functional leaf traits. New Phytol 152:69–83

    Article  Google Scholar 

  • Gates DM (1965) Energy, plants and ecology. Ecology 46:1–13

    Article  Google Scholar 

  • Giménez-Benavides L, Escudero A, Iriondo JM (2007a) Local adaptation enhances seedling recruitment along an altitudinal gradient in a high mountain Mediterranean plant. Ann Bot 99(4):723–734

    Article  PubMed  Google Scholar 

  • Giménez-Benavides L, Escudero A, Iriondo JM (2007b) Reproductive limits of a late-flowering high-mountain Mediterranean plant along an elevational climate gradient. New Phytol 173:367–382

    Article  PubMed  Google Scholar 

  • Givnish TJ (1984) Leaf and canopy adaptations in tropical forest. In: Medina E, Mooney HA, Vazquez-Yanes C (eds) Physiological ecology of plants of the wet tropics. Dr. W. Junk Publishers, The Hague, pp 51–54

    Google Scholar 

  • Givnish TJ (1986) On the economy of plant form and function. Cambridge University Press, Cambridge

    Google Scholar 

  • Givnish TJ (1987) Comparative studies of leaf form: assessing the relative roles of selective pressures and phylogenetic constraints. New Phytol 106:131–160

    Article  Google Scholar 

  • Givnish TJ, Vermeij GJ (1976) Sizes and shapes of liane leaves. Am Nat 110:743–778

    Article  Google Scholar 

  • Griffin JR (1973) Xylem sap tension in three woodland oaks of central California. Ecology 54:152–159

    Article  Google Scholar 

  • Grubb PJ (1977) Control of forest growth and distribution on wet tropical mountains: with special reference to mineral nutrition. Annu Rev Ecol Syst 8:83–107

    Article  CAS  Google Scholar 

  • Grubb PJ, Lloyd JR, Pennington TD, Whitmore TC (1963) A comparison of mountain and lowland rain forest in Ecuador: the forest structure, physiognomy and floristic. J Ecol 51:567–601

    Article  Google Scholar 

  • Halloy S (1989) Altitudinal limits of life in subtropical mountains: what do we know? Pac Sci 43:170–184

    Google Scholar 

  • Halloy SRP, Mark AF (1996) Comparative leaf morphology spectra of plant communities in New Zealand, the Andes and the European Alps. J Royal Soc New Zealand 26(1):41–78

    Article  Google Scholar 

  • He JS, Wang Z, Wang X, Schmid B, Zuo W, Zhou M, Zheng C, Wang M, Fang J (2006) A test of the generality of leaf trait relationships on the Tibetan Plateau. New Phytol 170:835–848

    Article  PubMed  Google Scholar 

  • Herrera C (1984) Patrones morfológicos y funcionales en plantas del matorral mediterráneo del sur de España. Stud Oecol 5:7–34

    Google Scholar 

  • Hoffmann AJ (1972) Morphology and histology of Trevoa trinervis (Rhamnaceae), a drought deciduous shrub from the Chilean matorral. Flora 161:527–538

    Google Scholar 

  • Jauffret S, Lavorel S (2003) Plant functional types: relevant to describe degradation in steppes of arid southern Tunisia? J Veg Sci 14:399–408

    Article  Google Scholar 

  • Jurado E, Westoby M (1992) Seedling growth in relation to seed size among species of arid Australia. J Ecol 80:407–416

    Article  Google Scholar 

  • Körner C (1991) Some often overlooked plant characteristics as determinants of plant growth: a reconsideration. Funct Ecol 5:162–173

    Article  Google Scholar 

  • Körner C (1999) Alpine plant life: functional plant ecology of high mountain ecosystems. Springer, Berlin

    Google Scholar 

  • Körner C (2003) Alpine plant life. Functional plant ecology of high mountain ecosystems, 2nd edn. Springer, Berlin

    Google Scholar 

  • Körner C, Larcher W (1988) Plant life in cold climates. In: Long SF, Woodward FI (eds) Plants and temperature. Cambridge University Press, Cambridge, pp 25–47

    Google Scholar 

  • Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16:545–556

    Article  Google Scholar 

  • Leishman MR, Wright IJ, Moles AT, Westoby M (2000) The evolutionary ecology of seed size. In: Fenner M (ed) Seeds: the ecology of regeneration in plant communities. CAB Int, Wallingford, pp 31–57

    Chapter  Google Scholar 

  • Midgley J, Bond W (1989) Leaf size and inflorescence size may be allometrically related traits. Oecologia 78:427–429

    Article  Google Scholar 

  • Milchunas DG, Sala OE, Lavenroth WK (1988) A generalized model of the effects of grazing by large herbivores on grassland community structure. Am Nat 132:87–106

    Article  Google Scholar 

  • Mitchell RJ (1993) Path analysis: pollination. In: Scheiner SM, Gurevitch J (eds) Design and analysis of ecological experiments. Chapman and Hall, New York USA, pp 211–231

    Google Scholar 

  • Moles AT, Westoby M (2000) Do small leaves expand faster than large leaves, and do shorter expansion times reduce herbivore damage? Oikos 90:517–526

    Article  Google Scholar 

  • Moles AT, Falster DS, Leishman MR, Westoby M (2004) Small seeded species produce more seeds per square metre of canopy per year but not per individual per lifetime. J Ecol 92:384–396

    Article  Google Scholar 

  • Moles AT, Ackerly DD, Webb CO, Tweddle JC, Dickie JB, Westoby M (2005) A brief history of seed size. Science 307:576–580

    Article  CAS  PubMed  Google Scholar 

  • Mooney H, Dunn EL (1970) Photosynthetic systems of Mediterranean climate shrubs and trees of California and Chile. Am Nat 104:292–303

    Article  Google Scholar 

  • Mooney HA, Kummerow J (1971) The comparative water economy of representative evergreen sclerophyll and drought deciduous shrubs of Chile. Bot Gaz 132:245–252

    Article  Google Scholar 

  • Mooney HA, Kummerow J, Johnson AW, Parsons DJ, Keeley S, Hoffmann A, Hays J, Giliberto RI, Chu C (1977) The producers, their resources and adaptative responses. In: Mooney HA (ed) Convergent evolution in Chile and California: Mediterranean climate ecosystems. Dowden, Hutchinson and Ross, Stroudsburg, Pennsylvania, pp 85–153

    Google Scholar 

  • Navarro T, Nieto-Caldera JM, Pérez-Latorre AV, Cabezudo B (1993) Estudios fenomorfológicos en la vegetación del sur de España III. Comportamiento estacional de una comunidad de badlands (Tabernas, Almería, España). Acta Bot Malacitana 17:189–200

    Google Scholar 

  • Navarro T, Alados CL, Cabezudo B (2006) Changes in plant functional types in response to goat and sheep grazing in two semi-arid shrublands of SE Spain. J Arid Environ 64:298–322

    Article  Google Scholar 

  • Navarro T, Pascual V, Alados CL, Cabezudo B (2009a) Growth form, dispersal strategies and taxonomic spectrum in a semi-arid shrubland in SE Spain. J Arid Environ 73:103–112

    Article  Google Scholar 

  • Navarro T, El Oualidi J, Taleb MS, Pascual V, Cabezudo B (2009b) Dispersal traits and dispersal patterns in an oro-mediterranean thorn cushion plant formation of eastern High Atlas, Morocco. Flora 2004:658–672

    Google Scholar 

  • Niinemets U (1996) Plant growth-form alters the relationship between foliar morphology and species shade-tolerance ranking in temperate woody taxa. Plant Ecol 124:145–153

    Google Scholar 

  • Niinemets U, Kull K (1994) Leaf weight per area and leaf size of 85 Estonian woody species in relation to shape tolerance and light availability. For Ecol Manag 70:1–10

    Article  Google Scholar 

  • Niinimets U, Portsmuth A, Tena D, Tobias M, Matesanz S, Valladares F (2007) Do we underestimate the importance of leaf size in plant economics? Disproportional scaling of support costs within the spectrum of leaf physiognomy. Ann Bot London 100:283–303

    Article  CAS  Google Scholar 

  • Niklas KJ (1994) Plant allometry: the scaling of form and process. University of Chicago Press, Chicago

    Google Scholar 

  • Nobel PS (1999) Physiochemical and environmental plant physiography. Academic Press, San Diego

    Google Scholar 

  • Ohsawa M (1990) An interpretation of latitudinal patterns of forest limit in south and east Asian mountains. J Ecol 78:326–339

    Article  Google Scholar 

  • Ohsawa M (1993) Latitudinal pattern of mountain vegetation zonation in southern and eastern Asia. J Veg Sci 4:13–18

    Article  Google Scholar 

  • Ohsawa M (1995) Latitudinal comparison of altitudinal changes in forest structure, leaf-type and species richness in humid monsoon Asia. Plant Ecol 121:3–10

    Article  Google Scholar 

  • Orshan G (1964) Seasonal dimorphism of desert and Mediterranean chamaephytes and its significance as a factor in their water economy. In: Rutter AJ, Whitehead FH (eds) Water in relation to plants. Blackwell, Oxford, pp 206–222

    Google Scholar 

  • Orshan G (1982) Monocharacter growth form types as a tool in an analytic-synthetic study of growth forms in Mediterranean type ecosystems. A proposal for an inter-regional program. Ecologia Mediterranea 7:159–171 (Definition et Localisation des écosystèmes méditerranées terrestres. Saint-Maximum 16-20.11.1981)

  • Orshan G (1989) Plant phenol-morphological studies in Mediterranean type ecosystems. Geobotany, vol 12. Kluwer, Dordrecht

    Google Scholar 

  • Orshan G, Le Roux A, Montenegro G (1984) Distribution on monocharacter growth form types in Mediterranean plant communities of Chile, South Africa and Israel. Bull Soc Bot Fr 131:427–439

    Google Scholar 

  • Parkhurst DF, Loucks OL (1972) Optimal leaf size in relation to environment. J Ecol 60:505–537

    Article  Google Scholar 

  • Parsons DJ (1976) Vegetation structure in the Mediterranean scrub communities of California and Chile. J Ecol 64:435–447

    Article  Google Scholar 

  • Pérez-Latorre AV, Cabezudo B (2002) Use of monocharacteristic growth forms and phenological phases to describe and differentiate plant communities in Mediterranean-type ecosystems. Plant Ecol 161:231–249

    Article  Google Scholar 

  • Pérez-Latorre AV, Cabezudo B, Navarro T, Nieto-Caldera JM (1995) Caracterización fenomorfológica y ecomorfológica de alcornocales andaluces (Málaga. España). Anales Jard Bot Madrid 54:554–560

    Google Scholar 

  • Quézel P (1952) Contribution à l’étude phytogéographique et phytosociologique du Grand Atlas calcaire. Mem Soc Sci Nat du Maroc 50:57

    Google Scholar 

  • Quézel P (1953) Contribution à la flore de l’Afrique du Nord. Deuxième contribution à la flore du Haut Atlas marocain. Bull Soc Hist Nat Afr du Nord 44:196–202

    Google Scholar 

  • Quézel P (1957) Peuplements végétaux des hautes montagnes de l’Afrique du Nord. Essai de synthèse biogéographique et phytosociologique, Lechevalier, Paris

    Google Scholar 

  • Quézel P (1981a) The study of groupings in the countries surrounding the Mediterranean: some methodological aspects. In: Goodall DW, Castri FD, Sprecht RL (eds) Mediterranean type shrublands. Elsevier, Amsterdam, pp 87–93

    Google Scholar 

  • Quézel P (1981b) Les hautes montagnes du maghreb et du proche-orient: essai de mise en parallèle des charactères phytogéographiques. Anales Jard Bot Madrid 37:353–372

    Google Scholar 

  • Reich PB, Walters MB, Ellsworth DS (1992) Leaf lifespan in relation to leaf, plant and stand characteristics among diverse ecosystems. Ecol Monogr 62:365–392

    Article  Google Scholar 

  • Reich PB, Walters MB, Ellsworth DS (1997) From tropics to tundra: global convergence in plant functioning. Proc Natl Acad Sci USA 94:13730–13734

    Article  CAS  PubMed  Google Scholar 

  • Reich PB, Ellsworth DS, Walters MB, Vose JM, Gresham C, Volin JC, Bowman WD (1999) Generality of leaf trait relationships: a test across six biomes. Ecology 80(6):1955–1969

    Article  Google Scholar 

  • Richards PW (1996) The tropical rain forest. An ecological study. Cambridge, University Press, England

    Google Scholar 

  • Sanquist DR, Ehlelinger JR (1997) Intraspecific variation of leaf pubescence and drought response in Encelia farinose associated with contrasting desert environments. New Phytol 135:635–644

    Article  Google Scholar 

  • Sanz-Elorza M, Dana ED, González A, Sobrino E (2003) High-mountain vegetation of the Central Iberian Peninsula as a probable sign of global warming. Ann Bot 92:273–280

    Article  PubMed  Google Scholar 

  • Schermelleh-Engel K, Moosbrugger H, Müller H (2003) Evaluating the fit of structural equation models: tests of significance and descriptive goodness-of-fit measures. Methods Psychol Res Online 8:23–74

    Google Scholar 

  • Schneider JV, Zipp D, Gaviria J, Zizka G (2003) Successional and mature stands in an upper Andean rain forest transect of Venezuela: do leaf characteristics of woody species differ? J Trop Ecol 19:251–259

    Article  Google Scholar 

  • Shipley B (2000) Cause and correlation in Biology: a user’s guide to path analysis. structural equations and causal inference. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Skarpe C (1996) Plant functional types and climate in South Africa savanna. J Veg Sci 7:397–404

    Article  Google Scholar 

  • Sun S, Jin D, Shi P (2006) The leaf size-twig size spectrum of temperate woody species along an altitudinal gradient: an invariant allometric scaling relationship. Ann Bot 97:97–107

    Article  PubMed  Google Scholar 

  • Svoboda J (1977) Ecology and primary production of raised beach communities, Truelove Lowland, Devon Island, Canada: a high arctic ecosystem. University of Alberta Press, Canada, pp 185–216

    Google Scholar 

  • Taleb MS, Fennane M (2003) Etude des groupements steppiques du Parc National du Haut Atlas oriental et ses bordures (Maroc). Bull Inst Sci Rabat 25:25–41

    Google Scholar 

  • Taleb MS, Fennane M (2008) Diversité du Parc National du Haut Atlas Oriental et des massifs Ayachi et Maâsker (Maroc). Acta Bot. Malacitana 33:125–147

    Google Scholar 

  • Valladares F, Pearcy REW (1999) The geometry of light interception by shorts of Heteromeles arbutifolia: morphological and physiological consequences for individual leaves. Oecologia 121:171–182

    Article  Google Scholar 

  • Venable DL, Rees M (2009) The scaling of seed size. J Ecol 97:27–31

    Article  Google Scholar 

  • Westoby M, Wright IJ (2003) The spectrum of twig-size variation and its correlates among perennial species in fire-prone sclerophyll vegetation. Oecologia 135:621–628

    PubMed  Google Scholar 

  • Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: some leading dimension of variation between species. Annu Rev Ecol Syst 33:125–159

    Article  Google Scholar 

  • White PS (1983a) Corner′s rules in eastern deciduous trees: allometry and its implications for the adaptative architecture of trees. Bull Torrey Bot Club 110:203–212

    Article  Google Scholar 

  • White PS (1983b) Evidence that temperature? East North American evergreen woody plant follow Corner′s rules. New Phytol 95:139–145

    Article  Google Scholar 

  • Whitmore TC (1975) Tropical rain forest of the Far East. Clarendon Press, Oxford

    Google Scholar 

  • Wilson PJ, Thompson K, Hodgson JG (1999) Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytol 143:155–162

    Article  Google Scholar 

  • Wolfe JA (1995) Palaeoclimatic estimates from Tertiary leaf assemblages. Annu Rev Earth Planet Sci Lett 23:119–142

    Article  CAS  Google Scholar 

  • Woodward FI (1995) Ecophysiological controls of conifer distribution. In: Smith WK, Hinckley TM (eds) Ecophysiology of coniferous forest. Academic Press, San Diego, pp 79–94

    Google Scholar 

  • Wright IJ, Westoby M (2002) Leaves at low versus high rainfall: coordination of structure, lifespan and physiology. New Phytol 155:403–416

    Article  Google Scholar 

  • Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Garnier E, Hikosaka K, Lamont BB, Lee W, Oleksyn J, Osada N, Pooter H, Villar R, Warton DI, Westoby M (2005) Assessing the generality of global leaf trait relationships. New Phytol 166:485–496

    Article  PubMed  Google Scholar 

  • Wright IJ, Falster DS, Pickup M, Westoby M (2006) Cross-species patterns in the coordination between leaf and stem traits, and their implications for plant hydraulics. Physiol Plant 127:445–456

    Article  CAS  Google Scholar 

  • Wright IJ, Ackerly DD, Bongers F, Harms KE, Ibarra-Manriquez G, Martinez-Ramos M, Mazer SJ, Mullaer-Landau H, Paz H, Pitman NCA, Poorter L, Silman MR, Vriesendorp CF, Webb CO, Westoby M, Wright SJ (2007) Relationships among ecologically important dimensions of plant trait variation in seven Neotropical forest. Ann Bot 99:1003–1015

    Article  PubMed  Google Scholar 

  • Young KR (1998) Composition and structure of a treeline forest in north-central Peru. In: Dallmeier F, Comiskey JA (eds) Forest diversity in North, Central and South America and the Caribbean. Man and Biosphere Series, vol 21. UNESCO, París, pp 595–613

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of the Spanish AECI (PCI-Morocco, A/6534/07) “Regeneration strategies of perennial plants species in natural ecosystems of Morocco”. We wish to thank Gabriel Montserrat-Martí, Sara Palacio and Adrian Escudero for their valuable and critical comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Navarro.

Additional information

Nomenclature: Flore Pratique du Maroc = Fennane et al. (1999–2007).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 56 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Navarro, T., El Oualidi, J., Taleb, M.S. et al. Leaf patterns, leaf size and ecologically related traits in high Mediterranean mountain on the Moroccan High Atlas. Plant Ecol 210, 275–290 (2010). https://doi.org/10.1007/s11258-010-9756-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-010-9756-3

Keywords

Navigation