Skip to main content
Log in

Lift-up Hysteresis Butterflies in Friction

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Charles-Augustin de Coulomb postulated that the act of rubbing of surfaces against each other leads the asperities on the surfaces to deform and mount each other. Thus, in order for tangential motion to ensue, an associated lift-up in the direction normal to the surface, will take place. Although this behavior has been sporadically pointed out in literature, we believe that the butterfly curves associated with it during presliding have not been reported before. We have performed dry, presliding rubbing experiments that show that there is a regular, relative normal displacement associated with the tangential motion; in particular, that normal motion describes rate-independent, hysteresis, butterfly curves (similar in nature to those found in piezo-electric and magnetic materials), in the tangential displacement and in the tangential force, respectively. This communication outlines and explores the basic behavior of those butterfly curves experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Amontons, G.: On the resistance originating in machines. In: Proceedings of the French Royal Academy of Sciences, pp. 206–222 (1699)

  2. Dowson, D.: History of Tribology. Longman, London (1979)

    Google Scholar 

  3. Bowden, F.P., Tabor, D.: The Friction and Lubrication of Solids. Clarendon Press, Oxford (1950)

    Google Scholar 

  4. Johnson, K.L., Kendall, K., Roberts, A.D.: Surface Energy and the Contact of Elastic Solids. Proc. R. Soc. Lond. Math. Phys. Sci. 324, 301–313 (1970)

    Article  Google Scholar 

  5. Derjaguin, B.V., Muller, V.M., Toporov, Y.V.: Effect of contact deformations on the adhesion of particles. J. Colloid Interf. Sci. 53(2), 314–326 (1975)

    Article  CAS  Google Scholar 

  6. Maugis, D.: Adhesion of spheres: the JKR-DMT transition using a Dugdale model. J. Colloid Interf. Sci. 150(1), 243–269 (1992)

    Article  CAS  Google Scholar 

  7. Tolstoi, D.M.: Significance of the normal degree of freedom and the natural normal vibrations in contact friction. Wear 10(3), 199–213 (1967)

    Article  Google Scholar 

  8. Gitis, N.V., Volpe, L.: Nature of static friction time dependence. J. Phys. D: Appl. Phys. 25(4), 605–612 (1992)

    Article  Google Scholar 

  9. Oden, J.T., Martins, J.A.C.: Models and computational methods for dynamic friction phenomena. Comput. Methods Appl. Mech. Eng. 52(1–3), 528–634 (1985)

    Google Scholar 

  10. Al-Bender, F., Lampaert, V., Swevers, J.: A novel generic model at asperity level for dry friction force dynamics. Tribol. Lett. 16(1), 81–93 (2004)

    Article  Google Scholar 

  11. De Moerlooze, K., Al-Bender, F., Van Brussel, H.: A generalised asperity-based friction model. Tribol. Lett. 40(1), 113–130 (2010)

    Article  Google Scholar 

  12. Wang, Z., Suryavanshi, A.P., Yu, M.-F.: Ferroelectric and piezoelectric behaviors of individual single crystalline BaTiO3 nanowire under direct axial electric biasing. Appl. Phys. Lett. 89, 1–3 (2006)

    Google Scholar 

  13. Li, F.-X., Li, S., Fang, D.-N.: Domain switching in ferroelectric single crystal/ceramics under electromagnetic loading. Mater. Sci. Eng. B 120, 119–124 (2005)

    Article  Google Scholar 

  14. Pietzsch, O., Kubetzka, A., Mode, M., Wiesendanger, R.: Observation of magnetic hysteresis ant the nanometer scale by spin-polarized scanning tunneling spectroscopy. Science 292, 2053–2056 (2001)

    Article  CAS  Google Scholar 

  15. Bienkowski, A., Kaczkowski, Z.: Major and minor magnetorestriction hysteresis loops on Co–Ci–Ni ferrite. J. Magn. Magn. Mater. 215(216), 234–236 (2000)

    Article  Google Scholar 

  16. Zivkovic, I., Drobac, D., Prester, M.: Two component butterfly hysteresis in RuSr2EuCeCu2O10. Physica C 433, 234–239 (2006)

    Article  CAS  Google Scholar 

  17. Sojoudi, H., Khonsari, M.M.: On the modeling of quasi-steady and unsteady dynamic friction in sliding lubricated line contact. ASME J. Tribol. 132(1), 012101 (2010)

    Google Scholar 

  18. Lampaert, V., Al-Bender, F., Swevers, J.: Experimental characterisation of dry friction at low velocities on a developed tribometer setup for macroscopic measurements. Tribol. Lett. 16(1–2), 95–105 (2004)

    Article  Google Scholar 

  19. Tomlinson, G.A.: A molecular theory of friction. Philos. Mag. 7(7), 905–939 (1929)

    CAS  Google Scholar 

  20. Iwan, W.D.: A distributed-element model for hysteresis and its steady-state dynamic response. J. Appl. Mech. 33(4), 893–900 (1966)

    Article  Google Scholar 

  21. Al-Bender, F., Lampaert, V., Swevers, J.: Modeling of dry sliding friction dynamics: from heuristic models to physically motivated models and back. Chaos 14(2), 446–460 (2004)

    Article  Google Scholar 

  22. Al-Bender, F., Lampaert, V., Swevers, J.: The generalized maxwell-slip model: a novel model for friction simulation and compensation. IEEE Trans. Autom. Control 50(11), 1883–1887 (2005)

    Article  Google Scholar 

Download references

Acknowledgment

This research is partially sponsored by the Fund for Scientific Research—Flanders (F.W.O.) under Grant FWO4283. The scientific responsibility is assumed by its authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farid Al-Bender.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Bender, F., De Moerlooze, K. & Vanherck, P. Lift-up Hysteresis Butterflies in Friction. Tribol Lett 46, 23–31 (2012). https://doi.org/10.1007/s11249-012-9914-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-012-9914-y

Keywords

Navigation