Skip to main content
Log in

Fabrication, Characterisation and Tribological Investigation of Artificial Skin Surface Lipid Films

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

This article deals with the tribology of lipid coatings that resemble those found on human skin. In order to simulate the lipidic surface chemistry of human skin, an artificial sebum formulation that closely resembles human sebum was spray-coated onto mechanical skin models in physiologically relevant concentrations (5–100 μg/cm2). Water contact angles and surface free energies (SFEs) showed that model surfaces with ≤25 μg/cm2 lipids appropriately mimic the physico-chemical properties of dry, sebum-poor skin regions. In friction experiments with a steel ball, lipid-coated model surfaces demonstrated lubrication effects over a wide range of sliding velocities and normal loads. In friction measurements on model surfaces as a function of lipid-film thickness, a clear minimum in the friction coefficient (COF) was observed in the case of hydrophilic, high-SFE materials (steel, glass), with the lowest COF (≈0.5) against skin model surfaces being found at 25 μg/cm2 lipids. For hydrophobic, low-SFE polymers, the COF was considerably lower (0.4 for PP, 0.16 for PTFE) and relatively independent of the lipid amount, indicating that both the mechanical and surface-chemical properties of the sliders strongly influence the friction behaviour of the skin-model surfaces. Lipid-coated skin models might be a valuable tool not only for tribologists but also for cosmetic chemists, in that they allow the objective study of friction, adhesion and wetting behaviour of liquids and emulsions on simulated skin-surface conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Agache, P., Humbert, P.: Measuring the Skin—Non-Invasive Investigations, Physiology, Normal Constants. Springer-Verlag, Berlin (2004)

    Google Scholar 

  2. Elias, P.M.: Epidermal lipids, barrier function, and desquamation. J. Invest. Dermatol. 80, 44S–49S (1983). doi:10.1111/1523-1747.ep12537108

    Article  PubMed  Google Scholar 

  3. Michniak, B.B., Wertz, P.W.: Water-lipid interactions. In: Fluhr, J.W., Elsner, P., Berardesca, E., Maibach, H.I. (eds.) Bioengineering of the Skin: Water and the Stratum Corneum, pp. 3–14. CRC Press, Boca Raton (2005)

    Google Scholar 

  4. Bouwstra, J.A., Gooris, G.S., Cheng, K., Weerheim, A., Bras, W., Ponec, M.: Phase behavior of isolated skin lipids. J. Lipid Res. 37, 999–1011 (1996)

    PubMed  CAS  Google Scholar 

  5. Bouwstra, J.A., Gooris, G.S., Dubbelaar, F.E., Ponec, M.: Phase behavior of lipid mixtures based on human ceramides: coexistence of crystalline and liquid phases. J. Lipid Res. 42, 1759–1770 (2001)

    PubMed  CAS  Google Scholar 

  6. de Jager, M.W., Gooris, G.S., Ponec, M., Bouwstra, J.A.: Lipid mixtures prepared with well-defined synthetic ceramides closely mimic the unique stratum corneum lipid phase behavior. J. Lipid Res. 46, 2649–2656 (2005). doi:10.1194/jlr.M500221-JLR200

    Article  PubMed  CAS  Google Scholar 

  7. Laugel, C., Yagoubi, N., Baillet, A.: ATR-FTIR spectroscopy: a chemometric approach for studying the lipid organisation of the stratum corneum. Chem. Phys. Lipids 135, 55–68 (2005). doi:10.1016/j.chemphyslip.2005.02.001

    Article  PubMed  CAS  Google Scholar 

  8. Moore, D.J., Snyder, R.G., Rerek, M.E., Mendelsohn, R.: Kinetics of membrane raft formation: fatty acid domains in stratum corneum lipid models. J. Phys. Chem. B 110, 2378–2386 (2006). doi:10.1021/jp054875h

    Article  PubMed  CAS  Google Scholar 

  9. de Jager, M., Groenink, W., van der Spek, J., Janmaat, C., Gooris, G., Ponec, M., Bouwstra, J.: Preparation and characterization of a stratum corneum substitute for in vitro percutaneous penetration studies. Biochim. Biophys. Acta Biomembr. 1758, 636–644 (2006). doi:10.1016/j.bbamem.2006.04.001

    Article  CAS  Google Scholar 

  10. Groen, D., Gooris, G.S., Ponec, M., Bouwstra, J.A.: Two new methods for preparing a unique stratum corneum substitute. Biochim. Biophys. Acta Biomembr. 1778, 2421–2429 (2008). doi:10.1016/j.bbamem.2008.06.015

    Article  CAS  Google Scholar 

  11. Charkoudian, J.C.: A model skin surface for testing adhesion to skin. J. Soc. Cosmet. Chem. 39, 225–234 (1988)

    Google Scholar 

  12. Bhuyan, S., Sundararajan, S., Yao, L., Hammond, E.G., Wang, T.: Boundary lubrication properties of lipid-based compounds evaluated using microtribological methods. Tribol. Lett. 22, 167–172 (2006). doi:10.1007/s11249-006-9076-x

    Article  CAS  Google Scholar 

  13. Elleuch, K., Elleuch, R., Zahouani, H.: Comparison of elastic and tactile behavior of human skin and elastomeric materials through tribological tests. Polym. Eng. Sci. 46, 1715–1720 (2006). doi:10.1002/pen.20637

    Article  CAS  Google Scholar 

  14. Ramkumar, S.S., Wood, D.J., Fox, K., Harlock, S.C.: Developing a polymeric human finger sensor to study the frictional properties of textiles. Part I: artificial finger development. Text. Res. J. 73, 469–473 (2003). doi:10.1177/004051750307300601

    Article  CAS  Google Scholar 

  15. Derler, S., Schrade, U., Gerhardt, L.-C.: Tribology of human skin and mechanical skin equivalents in contact with textiles. Wear 263, 1112–1116 (2007). doi:10.1016/j.wear.2006.11.031

    Article  CAS  Google Scholar 

  16. Gupta, A.B., Haldar, B., Bhattacharya, M.: A simple device for measuring skin friction. Int. J. Dermatol. 40, 116–121 (1995)

    Google Scholar 

  17. Cua, A.B., Wilhelm, K.P., Maibach, H.I.: Skin surface lipid and skin friction: relation to age, sex and anatomical region. Skin Pharmacol. 8, 246–251 (1995)

    Article  PubMed  CAS  Google Scholar 

  18. Elkhyat, A., Courderot-Masuyer, C., Gharbi, T., Humbert, P.: Influence of the hydrophobic and hydrophilic characteristics of sliding and slider surfaces on friction coefficient: in vivo human skin friction comparison. Skin Res. Technol. 10, 215–221 (2004). doi:10.1111/j.1600-0846.2004.00085.x

    Article  PubMed  Google Scholar 

  19. Sivamani, R.K., Goodman, J., Gitis, N.V., Maibach, H.I.: Coefficient of friction: tribological studies in man—an overview. Skin Res. Technol. 9, 227–234 (2003). doi:10.1034/j.1600-0846.2003.02366.x

    Article  PubMed  Google Scholar 

  20. Adams, M.J., Briscoe, B.J., Johnson, S.A.: Friction and lubrication of human skin. Tribol. Lett. 26, 239–253 (2007). doi:10.1007/s11249-007-9206-0

    Article  CAS  Google Scholar 

  21. Gerhardt, L.-C., Strässle, V., Lenz, A., Spencer, N.D., Derler, S.: Influence of epidermal hydration on the friction of human skin against textiles. J. R. Soc. Interface 5, 1317–1328 (2008). doi:10.1098/rsif.2008.0034

    Article  PubMed  Google Scholar 

  22. Derler, S., Gerhardt, L.-C., Lenz, A., Bertaux, E., Hadad, M.: Friction of human skin against smooth and rough glass as a function of the normal load. Tribol. Int. (in press). doi:10.1016/j.triboint.2008.11.009

  23. Ramalho, A., Silva, C.L., Pais, A.A.C.C., Sousa, J.J.S.: In vivo friction study of human skin: influence of moisturizers on different anatomical sites. Wear 263, 1044–1049 (2007). doi:10.1016/j.wear.2006.11.051

    Article  CAS  Google Scholar 

  24. Tang, W., Ge, S.-R., Zhu, H., Cao, X.-C., Li, N.: The influence of normal load and sliding speed on frictional properties of skin. J. Bionic Eng. 5, 33–38 (2008). doi:10.1016/S1672-6529(08)60004-9

    Article  Google Scholar 

  25. Elkhyat, A., Mavon, A., Leduc, M., Agache, P., Humbert, P.: Skin critical surface tension—a way to assess the skin wettability quantitatively. Skin Res. Technol. 2, 91–96 (1996). doi:10.1111/j.1600-0846.1996.tb00066.x

    Article  Google Scholar 

  26. Mavon, A., Zahouani, H., Redoules, D., Agache, P., Gall, Y., Humbert, P.: Sebum and stratum corneum lipids increase human skin surface free energy as determined from contact angle measurements: A study on two anatomical sites. Colloids Surf. B Biointerfaces 8, 147–155 (1997). doi:10.1016/S0927-7765(96)01317-3

    Article  CAS  Google Scholar 

  27. Stefaniak, A.B., Harvey, C.J.: Dissolution of materials in artificial skin surface film liquids. Toxicol. In Vitro 20, 1265–1283 (2006). doi:10.1016/j.tiv.2006.05.011

    Article  PubMed  CAS  Google Scholar 

  28. Stefaniak, A.B., Harvey, C.J., Wertz, P.W.: Artificial skin surface film liquids. Part 1: formulation and stability of sebum under conditions of storage and use. Clin. Exp. Dermatol. (submitted)

  29. Lagarde, J.M., Rouvrais, C., Black, D.: Topography and anisotropy of the skin surface with ageing. Skin Res. Technol. 11, 110–119 (2005). doi:10.1111/j.1600-0846.2005.00096.x

    Article  PubMed  CAS  Google Scholar 

  30. Li, L., Mac-Mary, S., Marsaut, D., Sainthillier, J.M., Nouveau, S., Gharbi, T., de Lacharriere, O., Humbert, P.: Age-related changes in skin topography and microcirculation. Arch. Dermatol. Res. 297, 412–416 (2006). doi:10.1007/s00403-005-0628-y

    Article  PubMed  Google Scholar 

  31. Gerhardt, L.-C.: Tribology of human skin in contact with medical textiles for decubitus prevention. Ph.D. thesis, ETH Zurich, Zurich (2008)

  32. Sheu, H.M., Chao, S.C., Wong, T.W., Yu-Yun Lee, J., Tsai, J.C.: Human skin surface lipid film: an ultrastructural study and interaction with corneocytes and intercellular lipid lamellae of the stratum corneum. Br. J. Dermatol. 140, 385–391 (1999). doi:10.1046/j.1365-2133.1999.02697.x

    Article  PubMed  CAS  Google Scholar 

  33. Mashaghi, A., Swann, M., Popplewell, J., Textor, M., Reimhult, E.: Optical anisotropy of supported lipid structures probed by waveguide spectroscopy and its application to study of supported lipid bilayer formation kinetics. Anal. Chem. 80, 3666–3676 (2008). doi:10.1021/ac800988v

    Article  PubMed  CAS  Google Scholar 

  34. Kaelble, D.H.: Dispersion-polar surface tension properties of organic solids. J. Adhes. 2, 66–81 (1970). doi:10.1080/0021846708544582

    Article  CAS  Google Scholar 

  35. Owens, D.K., Wendt, R.C.: Estimation of surface free energy of polymers. J. Appl. Polym. Sci. 13, 1741–1747 (1969). doi:10.1002/app.1969.070130815

    Google Scholar 

  36. Rabel, W.: Flüssigkeitsgrenzflächen in Theorie und Anwendungstechnik. Phys. Blatt. 33, 151–161 (1977)

    CAS  Google Scholar 

  37. Walther, F., Davydovskaya, P., Zürcher, S., Kaiser, M., Herberg, H., Gigler, A.M., Stark, R.W.: Stability of the hydrophilic behavior of oxygen plasma activated SU-8. J. Micromech. Microeng. 17, 524–531 (2007). doi:10.1088/0960-1317/17/3/015

    Article  ADS  CAS  Google Scholar 

  38. Gerhardt, L.-C., Mattle, N., Schrade, G.U., Spencer, N.D., Derler, S.: Study of skin-fabric interactions of relevance to decubitus: friction and contact-pressure measurements. Skin Res. Technol. 14, 77–88 (2008). doi:10.1111/j.1600-0846.2007.00264.x

    PubMed  Google Scholar 

  39. Albertorio, F., Chapa, V.A., Chen, X., Diaz, A.J., Cremer, P.S.: The α, α-(1 → 1) linkage of trehalose is key to anhydrobiotic preservation. J. Am. Chem. Soc. 129, 10567–10574 (2007). doi:10.1021/ja0731266

    Article  PubMed  CAS  Google Scholar 

  40. Burton, J.L.: The physical properties of sebum in acne vulgaris. Clin. Sci. 39, 757–767 (1970)

    PubMed  CAS  Google Scholar 

  41. Elkhyat, A., Agache, P., Zahouani, H., Humbert, P.: A new method to measure in vivo human skin hydrophobia. Int. J. Cosmet. Sci. 23, 347–352 (2001). doi:10.1046/j.0412-5463.2001.00108.x

    Article  PubMed  CAS  Google Scholar 

  42. Moore, D.F.: The Friction and Lubrication of Elastomers. Pergamon Press, Oxford, UK (1972)

    Google Scholar 

  43. Greenwood, J.A., Tabor, D.: The friction of hard sliders on lubricated rubber: the importance of deformation losses. Proc. Phys. Soc. Lond. 71, 989–1001 (1958). doi:10.1088/0370-1328/71/6/312

    Article  Google Scholar 

  44. Mate, C.M.: Nanotribology of lubricated and unlubricated carbon overcoats on magnetic disks studied by friction force microscopy. Surf. Coat. Technol. 63, 373–379 (1993). doi:10.1016/0257-8972(93)90270-X

    Article  Google Scholar 

  45. Birley, A.W., Haworth, B., Batchelor, J.: Hardness, friction, surface abrasion and wear. In: Birley, A., Haworth, B., Batchelor, J. (eds.) Physics of Plastics: Processing, Properties and Materials Engineering, pp. 320–326. Hanser Verlag, Munich, Germany (1992)

    Google Scholar 

  46. Hornbogen, E., Schäfer, K.: Friction and wear of thermoplastic polymers. In: Rigney, D.A. (ed.) Fundamentals of Friction and Wear of Materials, pp. 409–438. American Society for Metals, Metals Park, Ohio (1981)

    Google Scholar 

  47. Ludema, K.C., Tabor, D.: The friction and visco-elastic properties of polymeric solids. Wear 9, 329–348 (1966). doi:10.1016/0043-1648(66)90018-4

    Article  CAS  Google Scholar 

  48. Yamaguchi, Y.: Friction. In: Yamaguchi, Y. (ed.), Tribology of Plastic Materials: Their Characteristics and Applications to Sliding Components, pp. 1–91. Elsevier Science Publishers B.V., Amsterdam, The Netherlands (1990)

  49. Koudine, A.A., Barquins, M., Anthoine, P.H., Aubert, L., Lévêque, J.-L.: Frictional properties of skin: proposal of a new approach. Int. J. Cosmet. Sci. 22, 11–20 (2000). doi:10.1046/j.1467-2494.2000.00006.x

    Article  PubMed  CAS  Google Scholar 

  50. Wolfram, L.J.: Friction of skin. J. Soc. Cosmet. Chem. 34, 465–476 (1983)

    Google Scholar 

  51. Derler, S., Huber, R., Feuz, H.-P., Hadad, M.: Influence of surface microstructure on the sliding friction of plantar skin against hard substrates. Wear (accepted)

  52. Caravia, L., Dowson, D., Fisher, J., Corkhill, P.H., Tighe, B.J.: Friction and mixed lubrication in soft layer contacts. In: Dowson, D., Taylor, C.M., Childs, T.H.C., Godet, M., Dalmaz, G. (eds.) Thin Films in Tribology, pp. 529–534. Elsevier Science Publishers B.V., Amsterdam, The Netherlands (1993)

    Google Scholar 

  53. Dowson, D.: Tribology and the skin surface. In: Wilhelm, K.-P., Elsner, P., Berardesca, E., Maibach, H.I. (eds.) Bioengineering of the Skin: Skin Surface Imaging and Analysis, 1st edn, pp. 159–180. CRC Press, Boca Raton (1997)

    Google Scholar 

  54. Callister, J.W.D.: Materials science and engineering: an introduction, 6th edn. John Wiley & Sons, Inc., Hoboken, NJ, USA (2003)

    Google Scholar 

  55. Myshkin, N.K., Petrokovets, M.I., Kovalev, A. V.: Tribology of polymers: adhesion, friction, wear, and mass-transfer. Tribol. Int. 38, 910–921 (2005). doi:10.1016/j.triboint.2005.07.016

    Google Scholar 

  56. Green, J.-B.D., McDermott, M.T., Porter, M.D., Siperko, L.M.: Nanometer-scale mapping of chemically distinct domains at well-defined organic interfaces using frictional force microscopy. J. Phys. Chem. 99, 10960–10965 (1995). doi:10.1021/j100027a041

    Article  Google Scholar 

  57. Spori, D.M., Drobek, T., Zürcher, S., Ochsner, M., Sprecher, C., Mühlebach, A., Spencer, N.D.: Beyond the lotus effect: roughness influences on wetting over a wide surface-energy range. Langmuir 24, 5411–5417 (2008). doi:10.1021/la800215r

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to express their gratitude to Dr. A. Stefaniak (NIOSH, Morgantown), and Prof. P. W. Wertz (University of Iowa) for their valuable expertise and advice on the composition of artificial sebum. Thanks are due to Dr. S. Lee, D. Spori, E. Beurer (LSST, ETH Zürich), A. Lenz (Empa, St. Gallen), Dr. T. Skrivanek (Krüss, Hamburg) for technical support and helpful discussions, as well as A. Niederer (Empa, Dübendorf) for graphical design work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Derler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerhardt, LC., Schiller, A., Müller, B. et al. Fabrication, Characterisation and Tribological Investigation of Artificial Skin Surface Lipid Films. Tribol Lett 34, 81–93 (2009). https://doi.org/10.1007/s11249-009-9411-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-009-9411-0

Keywords

Navigation