Skip to main content
Log in

Ruthenium Metal Nanoparticles in Hydrogenation: Influence of Phosphorus-Ligands

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Ruthenium nanoparticles (RuNPs) attracted much attention in the last decade because of their potential applications in catalytic hydrogenation and oxidation reactions. The broad spectrum of applications of ruthenium in catalysis, notably together with its relatively low price, renders RuNPs an attractive alternative to platinum or rhodium. Many different additives were reported for the stabilization of RuNPs, in particular polymers and ionic liquids. Lately, many reports showed the effectiveness of RuNPs stabilization by coordinating molecules commonly used in organometallic chemistry such as amines, thiols, and alcohols. Very recently, the type of stabilizers was extended to more sophisticated ligands such as phosphorus, nitrogen and carbon donor ligands. In this mini-review, we will present an overview of the various ligands used for RuNPs, with an emphasis on phosphine ligand effects on the morphology and catalytic activity in hydrogenation reactions. Appendix gives a tabular overview of the key features of the RuNPs reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1

Similar content being viewed by others

References

  1. Schmid G (2004) Cluster and colloids from theory to applications. Wiley, Weinheim

    Google Scholar 

  2. de Jongh GL (1994) Physics and chemistry of metal cluster compounds. Kluwer, Dordrecht

    Book  Google Scholar 

  3. Klabunde KJ, Cardenas-Trivino G (1996) Active metals: preparation, characterization, applications. Wiley, Weinheim

    Google Scholar 

  4. Feldheim DL, Foss CA (2002) Metal nanoparticles. Marcel Dekker, New York

    Google Scholar 

  5. Astruc D (2008) Nanoparticles and catalysis. Wiley, New York

    Google Scholar 

  6. Schmid G, Chi L (1998) Adv Mater 10:515

    Article  CAS  Google Scholar 

  7. Schmid G, Baumle M, Geerkens M, Heim I, Osemann C, Samitowski T (1999) Chem Soc Rev 28:179

    Article  CAS  Google Scholar 

  8. Aiken JD III, Finke RG (1999) J Mol Catal 145:1

    Article  CAS  Google Scholar 

  9. Roucoux A, Schulz J, Patin H (2002) Chem Rev 102:3757

    Article  CAS  Google Scholar 

  10. Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Chem Rev 104:3893

    Article  CAS  Google Scholar 

  11. El-Sayed MA (2001) Acc Chem Res 34:257

    Article  CAS  Google Scholar 

  12. Katz E, Willner I (2004) Angew Chem Int Ed 43:6042

    Article  CAS  Google Scholar 

  13. Watzky MA, Finke RG (1997) J Am Chem Soc 119:10382

    Article  CAS  Google Scholar 

  14. Besson C, Finney EE, Finke RG (2005) J Am Chem Soc 127:8179

    Article  CAS  Google Scholar 

  15. Besson C, Finney EE, Finke RG (2005) Chem Mater 17:4925

    Article  CAS  Google Scholar 

  16. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chem Rev 105:1025

    Article  CAS  Google Scholar 

  17. Lin Y, Finke RG (1994) J Am Chem Soc 116:8335

    Article  CAS  Google Scholar 

  18. Aiken JD III, Finke RG (1999) Chem Mater 1:139

    Google Scholar 

  19. Somorjaj GA, Borodko YG (2001) Catal Lett 76:1

    Article  Google Scholar 

  20. Bönneman H, Richards RM (2001) Eur J Inorg Chem 10:2445

    Google Scholar 

  21. Glanz J (1995) Science 269:1363

    Article  CAS  Google Scholar 

  22. Henglein A (1989) Chem Rev 89:1861

    Article  CAS  Google Scholar 

  23. Caseri W (2000) Macromol Rapid Commun 21:705

    Article  CAS  Google Scholar 

  24. Schmid G, Simon U (2005) Chem Commun 6:697

    Article  Google Scholar 

  25. Schmid G (2001) Adv Eng Mater 3:737

    Article  CAS  Google Scholar 

  26. Alivisatos AP, Johnson KP, Peng X, Wilson TE, Loweth CJ, Bruchez MP Jr, Schultz PG (1996) Nature 382:609

    Article  CAS  Google Scholar 

  27. Elghanian R, Strohoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Science 277:1078

    Article  CAS  Google Scholar 

  28. Ott LS, Finke RG (2007) Coord Chem Rev 251:1075–1100

    Article  CAS  Google Scholar 

  29. Gual A, Godard C, Castellón S, Curulla-Ferré D, Claver C (2012) Catal Today 183:154

    Article  CAS  Google Scholar 

  30. Amiens C, Chaudret B, Ciuculescu D, Collière V, Fajerwerg K, Fau P, Kahn M, Maisonnat A, Soulantica K, Philippot K (2013) N J Chem. doi:10.1039/C3NJ00650F

    Google Scholar 

  31. According to 2010 Strem Catalog, 5 g of PtCl2, RhCl3, RuCl3 (anhydrous, >99.9% purity) cost respectively 565€, 1488€ and 241€

  32. Gual A, Godard C, Castellón S, Claver C (2010) Dalton Trans 39:11499

    Article  CAS  Google Scholar 

  33. Lara P, Philippot K, Chaudret B (2013) ChemCatChem 5:28

    Article  CAS  Google Scholar 

  34. Roucoux A, Nowicki A, Philippot K (2008) In: Astruc D (ed) Nanoparticles and Catalysis. Wiley, Weinheim, p 349

    Google Scholar 

  35. Lu F, Liu J, Xu J (2006) Adv Synth Catal 348:857

    Article  CAS  Google Scholar 

  36. Xiao CX, Cai ZP, Wang T, Kou Y, Yan N (2008) Angew Chem Int Ed 47:746

    Article  CAS  Google Scholar 

  37. Song L, Li X, Wang H, Wu H, Wu P (2009) Catal Lett 133:63

    Article  CAS  Google Scholar 

  38. Rossi LM, Machado G (2009) J Mol Catal 298:69

    Article  CAS  Google Scholar 

  39. Duteil A, Quéau R, Chaudret B, Mazel R, Roucau C, Bradley JS (1993) Chem Mater 5:341

    Article  CAS  Google Scholar 

  40. Pan C, Pelzer K, Philippot K, Chaudret B, Dassenoy F, Lecante P, Casanove MJ (2001) J Am Chem Soc 123:7584

    Article  CAS  Google Scholar 

  41. Spitaleri A, Pertici P, Scalera N, Vitulli G, Hoang M, Turney TW, Gleria M (2003) Inorg Chim Acta 352:61

    Article  CAS  Google Scholar 

  42. Silveira ET, Umpierre AP, Rossi LM, Machado G, Morais J, Soares GV, Baumvol IJR, Teixeira SR, Fichtner PFP, Dupont J (2004) Chem Eur J 10:3734

    Article  CAS  Google Scholar 

  43. Prechtl MHG, Scarlot M, Scholten JD, Machada G, Teixeira SR, Dupont J (2008) Inorg Chem 47:8995

    Article  CAS  Google Scholar 

  44. Nagahara H (1992) Rev J Surf Sci Technol Avant-Garde 30:951

    CAS  Google Scholar 

  45. Asahi Chemical Co. Japan, Kokai Tokkyo Koho 62-81332, 62-201830, 63-17834, 63-63627

  46. Struijk J, Scholten JJF (1992) Appl Catal 82:277

    Article  CAS  Google Scholar 

  47. van der Steen PJ, Scholtend JJF (1990) Appl Catal 58:291

    Article  Google Scholar 

  48. Struijk J, Scholten JJF (1990) Appl Catal 62:151

    Article  Google Scholar 

  49. Soede M, van de Sandt EJAX, Makkee M, Scholten JJF (1993) Heterog Catal Fine Chem 78:345

    CAS  Google Scholar 

  50. Vollmer C, Redel E, Abu-Shandi K, Thomann R, Manyar H, Hardcare C, Janiak C (2010) Chem Eur J 16:3849

    Article  CAS  Google Scholar 

  51. Kurihara LK, Chow GM, Schoen PE (1995) Nanostruct Mater 5:607

    Article  CAS  Google Scholar 

  52. Nowicki A, Zhang Y, Léger B, Rolland JP, Bricout H, Monflier E, Roucoux A (2006) Chem Commun 3:296

    Article  Google Scholar 

  53. Chau NTT, Handjani S, Guegan JP, Guerrero M, Monflier E, Philippot K, Denicourt-Nowicki A, Roucoux A (2013) ChemCatChem 5:1497

    Article  CAS  Google Scholar 

  54. Pelzer K, Vidoni O, Philippot K, Chaudret B, Collière V (2003) Adv Funct Mater 13:118

    Article  CAS  Google Scholar 

  55. Can H, Metin Ö (2012) Appl Catal 125:304

    Article  CAS  Google Scholar 

  56. Lee JY, Yang J, Deivaraj TC, Too HP (2003) J Colloid Interface Sci 268:77

    Article  CAS  Google Scholar 

  57. Jansat S, Picurelli D, Pelzer K, Philippot K, Gómez M, Muller G, Lecante P, Chaudret P (2006) N J Chem 30:115

    Article  CAS  Google Scholar 

  58. Favier I, Massou S, Teuma E, Philippot K, Chaudret B, Gómez M (2008) Chem Commun 28:3296

    Article  Google Scholar 

  59. García-Antón J, Axet MR, Jansat S, Philippot K, Chaudret B, Pery T, Buntkowsky G, Limbach HH (2008) Angew Chem Int Ed 120:2104

    Article  Google Scholar 

  60. Novio F, Philippot K, Chaudret B (2010) Catal Lett 140:1 The same research group also published an interesting article with deeper surface characterization

    Article  CAS  Google Scholar 

  61. González-Gálvez D, Nolis P, Philippot K, Chaudret B, van Leeuwen PWNM (2010) ACS Catal 2:317

    Article  Google Scholar 

  62. Guerrero N, Roucoux A, Denicourt-Nowicki A, Bricout H, Monflier E, Collière V, Fajerwerg K, Philippot K (2012) Catal Today 183:34

    Article  CAS  Google Scholar 

  63. Debouttière PJ, Coppel Y, Denicourt-Nowicki A, Roucoux A, Chaudret B, Philippot K (2012) Eur J Inorg Chem 8:1229

    Article  Google Scholar 

  64. Escárcega-Bobadilla MV, Tortosa C, Teuma E, Pradel C, Orejón A, Gómez M, Masdeu-Bultó AM (2009) Catal Today 148:398

    Article  Google Scholar 

  65. Gual A, Axet MR, Philippot K, Chaudret B, Denicourt-Nowicki A, Roucoux A, Castillon S, Claver C (2008) Chem Commun 24:2759

    Article  Google Scholar 

  66. Gual A, Godard C, Philippot K, Chaudret B, Denicourt-Nowicki A, Roucoux A, Castillon S, Claver C (2009) ChemSusChem 2:769

    Article  CAS  Google Scholar 

  67. van Leeuwen PWNM, Roobeek CF, Wife RL, Frijns JHG (1986) J. Chem. Soc. Chem Commun 31

  68. Borona E, Illas F, Corma A (2009) J Phys Chem 113:3750

    Article  Google Scholar 

  69. Bus E, Miller JT, van Bokhoven JA (2005) J Phys Chem 109:14581

    Article  CAS  Google Scholar 

  70. Mohr C, Hofmeister H, Radnik J, Claus P (2003) J Am Chem Soc 125:1905

    Article  CAS  Google Scholar 

  71. Rafter E, Gutmann T, Löw F, Buntkowsky G, Philippot K, Chaudret B, van Leeuwen PWNM (2013) Catal Sci Technol 3:595

    Article  CAS  Google Scholar 

  72. Bronger R, Le TD, Bastin S, García-Antón J, Citadelle C, Chaudret B, Lecante P, Igau A, Philippot K (2011) N J Chem 35:2653

    Article  CAS  Google Scholar 

  73. Chen W, Davies JR, Ghosh D, Tong MC, Konopelski JP, Chen S (2006) Chem Mater 18:5253

    Article  CAS  Google Scholar 

  74. Lara P, Rivada-Wheelaghan O, Conejero S, Poteau R, Philippot K, Chaudret B (2011) Angew Chem Int Ed 123:12286

    Article  Google Scholar 

  75. González-Gálvez D, Lara P, Rivada-Wheeaghan O, Conejero S, Chaudret B, Philippot K, van Leeuwen PWNM (2013) Catal Sci Technol 3:99

    Article  Google Scholar 

Download references

Acknowledgments

The European Union is acknowledged for ERC Advanced Grant 2009-246763 and Johnson-Matthey/Alfa Aesar for a generous loan of ruthenium trichloride hydrate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. W. N. M. van Leeuwen.

Appendix

Appendix

See the Tables 1, 2, and 3.

Table 1 Polymer and ionic liquids-modified RuNPs synthesis and catalytic applications
Table 2 Alcohols and amines-modified RuNPs synthesis and catalytic applications
Table 3 Phosphine and carbene-modified RuNPs synthesis and catalytic applications

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tschan, M.JL., Diebolt, O. & van Leeuwen, P.W.N.M. Ruthenium Metal Nanoparticles in Hydrogenation: Influence of Phosphorus-Ligands. Top Catal 57, 1054–1065 (2014). https://doi.org/10.1007/s11244-014-0270-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-014-0270-z

Keywords

Navigation