Skip to main content
Log in

Catalytic Activity of Pt Nano-Particles for H2 Formation

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Associative desorption of hydrogen at edges and facets on Pt nano-particles (NPs) was studied using density functional theory. The goal was to identify catalytically active sites on Pt NPs for the hydrogen evolution reaction. Since NPs used in catalysis typically contain over a thousand atoms, calculations of whole particles are too demanding and the adsorption sites were instead modeled by periodic face centered cubic slabs representing an array of edges between two (111) micro-facets or edges between (111) and (100) micro-facets. The width of the facets in the periodic representations was systematically increased to reach converged results for binding and activation energy. For maximum hydrogen coverage, edges between (111) micro-facets were found to be several orders of magnitude more active than edges between (100) and (111) micro-facets or flat terraces. Unlike the missing row Pt(110)-(2 × 1) surface, which has sometimes been used as a simple model for edges between (111) micro-facets, the converged edge model does not show the recently reported reentrant behavior in desorption mechanism (Gudmundsdóttir et al., Phys Rev Lett 108:156101, 2012).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nørskov JK, Bligaard T, Rossmeisl J, Christensen CH (2009) Towards the computational design of solid catalysts. Nat Chem 1:37

    Article  Google Scholar 

  2. Nørskov JK, Abild-Pedersen F, Studt F, Bligaard T (2011) Density functional theory in surface chemistry and catalysis. Proc Natl Acad Sci USA 108:937

    Article  Google Scholar 

  3. Hvolbæk B, Janssens TVW, Clausen BC, Falsig H, Christensen CH, Nørskov JK (2007) Catalytic activity of Au nano-particles. Nano Today 2:14

    Article  Google Scholar 

  4. Brodersen SH, Grønbjerg U, Hvolbæk B, Schiøtz J (2011) Understanding the catalytic activity of gold nano-particles through multi-scale simulations. J Catal 284:34

    Article  CAS  Google Scholar 

  5. Christman K, Ertl G (1976) Interaction of hydrogen with Pt(111): the role of atomic steps. Surf Sci 60:365

    Article  Google Scholar 

  6. Dahl S, Logadóttir A, Egeberg RC, Larsen JH, Chorkendorff I, Tørnqvist E, Nørskov JK (1999) Role of steps in N2 activation on Ru(0001). Phys Rev Lett 83:1814

    Article  Google Scholar 

  7. Brouzgoua A, Songb SQ, Tsiakaras P (2012) Low and non-platinum electrocatalysts for PEMFCs: current status, challenges and prospects. Appl Catal B 127:371

    Article  Google Scholar 

  8. Martin S, Martinez-Vazquez B, Garcia-Ybarra PL, Castillo JL (2013) Peak utilization of catalyst with ultra-low Pt loaded PEM fuel cell electrodes prepared by the electrospray method. J Power Sourc 229:179

    Article  CAS  Google Scholar 

  9. Henry CR (1998) Surface studies of supported model catalysts. Surf Sci Rep 31:231

    Article  CAS  Google Scholar 

  10. Narayanan R, El-Sayed MA (2005) Catalysis with transition metal nano-particles in colloidal solution: nanoparticle shape dependence and stability. J Phys Chem B 109:12663

    Article  CAS  Google Scholar 

  11. Kleis J, Greeley J, Romero NA, Morozov VA, Falsig H, Larsen AH, Lu J, Mortensen JJ, Dulak M, Thygesen KS, Nørskov JK, Jacobsen KW (2011) Finite size effects in chemical bonding: from small clusters to solids. Catal Lett 141:1067

    Article  CAS  Google Scholar 

  12. Gavnholt J, Schiøtz J (2008) Structure and reactivity of ruthenium nano-particles. Phys Rev B 77:035404

    Article  Google Scholar 

  13. Lu C, Masel R (2001) The effect of ruthenium on the binding of CO, H2, and H2O on Pt(110). J Phys Chem B 105:9793

    Article  CAS  Google Scholar 

  14. Cvetanovic R, Amenomiya Y (1967) In: Frankenberg W (ed) Advanes in catalysis, vol. 17. Academic Press 2 Inc., New York

  15. Gudmundsdóttir S, Tang W, Henkelman G, Jónsson H, Skúlason E (2012) Local density of states analysis using Bader decomposition for N2 and CO2 adsorbed on Pt(110)-(1 × 2) electrodes. J Chem Phys 137:164705

    Article  Google Scholar 

  16. Skúlason E, Karlberg GS, Rossmeisl J, Bligaard T, Greeley J, Jónsson H, Nørskov JK (2007) Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the Pt(111) electrode. Phys Chem Chem Phys 9:3241

    Article  Google Scholar 

  17. Rossmeisl J, Skúlason E, Björketun M, Tripkovic V, Nørskov J (2008) Modeling the electrified solidliquid interface. Chem Phys Lett 466:68

    Article  CAS  Google Scholar 

  18. Skúlason E, Tripkovic V, Björketun ME, Gudmundsdóttir S, Karlberg G, Rossmeisl J, Bligaard T, Jónsson H, Nørskov JK (2010) Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. J Phys Chem C 114:18182

    Article  Google Scholar 

  19. Tripkovic V, Björketun ME, Skúlason E, Rossmeisl J (2011) Standard hydrogen electrode and potential of zero charge in density functional calculations. Phys Rev B 84:115452

    Article  Google Scholar 

  20. Björketun ME, Tripkovic V, Skúlason E, Rossmeisl J (2013) Modeling of the symmetry factor of electrochemical proton discharge via the Volmer reaction. Catal Today 202:168

    Article  Google Scholar 

  21. Björketun ME, Zeng Z, Ahmed R, Tripkovic V, Thygesen KS, Rossmeisl J (2013) Avoiding pitfalls in the modeling of electrochemical interfaces. Chem Phys Lett 555:145

    Article  Google Scholar 

  22. Rossmeisl J, Chan K, Ahmed R, Tripkovic V, Björketun ME (2013) pH in atomic scale simulations of electrochemical interfaces. Phys Chem Chem Phys 15:10321

    Google Scholar 

  23. Karlberg GS, Jaramillo TF, Skúlason E, Rossmeisl J, Bligaard T, Nørskov JK (2007) Cyclic voltammograms for H on Pt(111) and Pt(100) from first principles. Phys Rev Lett 99:126101

    Article  CAS  Google Scholar 

  24. Kohn W (1998) Nobel lecture: electronic structure of matter—wave functions and density functionals Rev Mod Phys 71:1253

    Article  Google Scholar 

  25. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169

    Article  CAS  Google Scholar 

  26. Hammer B, Hansen LB, Nørskov JK (1999) Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys Rev B 46:7413

    Article  Google Scholar 

  27. Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41:7892

    Article  Google Scholar 

  28. Jónsson H, Mills G, Jacobsen KW (1998) Nudged elastic band method for finding minimum energy paths of transitions. In: Berne BJ, Ciccotti G, Coker DF (ed) Classical and quantum dynamics in condensed phase simulations, World Scientific, Berkeley, pp 385

  29. Henkelman G, Uberuaga B, Jónsson H (2000) A climbing-image NEB method for finding saddle points and minimum energy paths. J Chem Phys 113:9901

    Article  CAS  Google Scholar 

  30. Henkelman G, Jónsson H (2000) Improved tangent estimate in the NEB method for finding minimum energy paths and saddle points. J Chem Phys 113:9978

    Article  CAS  Google Scholar 

  31. Zhang Z, Minca M, Deisl C, Loerting T, Menzel A, Bertel E (2004) H on Pt(110): an atypical chemisorption site at low coverages. Phys Rev B 70:121401

    Article  Google Scholar 

  32. Minca M, Penner S, Loerting T, Menzel A, Bertel E, Zucca R, Redinger J (2007) Chemisorption of hydrogen on the missing-row Pt(110)-(1 × 2) surface. Top Catal 46:161

    Article  CAS  Google Scholar 

  33. Gudmundsdóttir S, Skúlason E, Jónsson H (2012) Reentrant mechanism for associative desorption: H2/Pt(110)-(1 × 2). Phys Rev Lett 108:156101

    Article  Google Scholar 

  34. Gudmundsdóttir S, Skúlason E, Weststrate K-J, Juurlink L, Jónsson H (2013) Hydrogen adsorption and desorption at the Pt(110)-(1 × 2) surface: experimental and theoretical study. Phys Chem Chem Phys 15:6323

    Article  Google Scholar 

  35. Olsen RA, Badescu SC, Ying SC, Baerends EJ (2004) Adsorption and diffusion on a stepped surface: atomic hydrogen on Pt(211). J Chem Phys 120:11852

    Article  CAS  Google Scholar 

  36. Vehviläinen T, Salo P, Ala-Nissilä T, Ying SC (2009) Electronic properties of H on vicinal Pt surfaces: first-principles study. Phys Rev B 80:035403

    Article  Google Scholar 

  37. Gee AT, Hayden BE, Mormiche C, Nunney TS (2000) The role of steps in the dynamics of hydrogen dissociation on Pt(533). J Phys Chem 112:7660

    Article  CAS  Google Scholar 

  38. Engstrom JR, Tsai W, Weinberg WH (1987) The chemisorption of hydrogen on the (111) and (110)-(1 × 2) surfaces of iridium and platinum. J Chem Phys 87:3104

    Article  CAS  Google Scholar 

  39. Lerch D, Klein A, Schmidt A, Müller S, Hammer L, Heinz K, Weinert M (2006) Unusual adsorption site of hydrogen on the unreconstructed Ir(100) surface. Phys Rev B 73:075430

    Article  Google Scholar 

  40. Minca M, Penner S, Dona E, Menzel A, Bertel E, Brouet V, Redinger J (2007) Surface resonances on transition metals as low-dimensional model systems. New J Phys 9:386

    Article  Google Scholar 

  41. Johansson M, Skúlason E, Nielsen G, Murphy S, Nielsen RM, Chorkendorff I (2010) Hydrogen adsorption on palladium and palladium hydride at 1 bar. Surf Sci 604:718

    Article  CAS  Google Scholar 

  42. Kristinsdóttir L, Skúlason E (2012) A systematic DFT study of hydrogen diffusion on transition metal surfaces. Surf Sci 606:1400

    Article  Google Scholar 

  43. Kubas GJ (2001) Metal dihydrogen and σ-bond complexes: structure, theory, and reactivity. Springer, Boulder

    Google Scholar 

  44. Yang F, Zhang Q, Liu Y, Chen S (2011) A theoretical consideration on the surface structure and nano particle size effect of Pt in hydrogen electrocatalysis. J Phys Chem C 115:19311

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded in part by the Eimskip Fund of the University of Iceland, the Icelandic Research Fund and Nordic Energy Research by way of the Nordic Initiative for Solar Fuel Development. HJ acknowledges support from the Academy of Finland through the FiDiPro program. The calculations were in part carried out on the Nordic High Performance Computer (Gardar) located in Iceland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannes Jónsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skúlason, E., Faraj, A.A., Kristinsdóttir, L. et al. Catalytic Activity of Pt Nano-Particles for H2 Formation. Top Catal 57, 273–281 (2014). https://doi.org/10.1007/s11244-013-0182-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0182-3

Keywords

Navigation