Skip to main content
Log in

Activation of Amberlyst-70 for Alkene Oligomerization in Hydrophobic Media

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

We have observed that pretreating Amberlyst-70 with a C9 ketone improves, up to five times, the rate of alkene oligomerization. Physical characterization of Amberlyst-70 reveals minimal changes to the particle dimensions upon exposure to 5-nonanone. Diffuse reflectance infrared spectroscopy indicates an interaction between the ketone and the acid sites within the catalyst. While the total number of acid sites is similar before and after treatment with nonanone, microcalorimetric studies of butene adsorption and temperature programmed desorption studies of butene desorption reveal that both adsorption and desorption of butene occur more rapidly in the catalyst treated with 5-nonanone, indicating that pretreatment of the catalyst with the ketone decreases the barrier for butene transport by 5–6 kJ/mol. The peak temperature for TPD spectra of butene desorption are observed to shift from 360 K for nonanone-treated Amberlyst-70 to 376 K in the case of untreated sample. The catalytic effect of the treatment with nonanone decreases slowly with time-on-stream, but remains after 200 h on stream (with the rate still being a factor of 2 higher than for the untreated sample); however, catalytic activity can be recovered upon additional treatment with ketone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Shafiee S, Topal E (2009) Energ Policy 37:181–189

    Article  Google Scholar 

  2. Rosenzweig C, Karoly D, Vicarelli M, Neofotis P, Wu QG, Casassa G, Menzel A, Root TL, Estrella N, Seguin B, Tryjanowski P, Liu CZ, Rawlins S, Imeson A (2008) Nature 453:353–357

    Article  CAS  Google Scholar 

  3. Huber GW, Iborra S, Corma A (2006) Chem Rev 106:4044–4098

    Article  CAS  Google Scholar 

  4. Tilman D, Socolow R, Foley JA, Hill J, Larson E, Lynd L, Pacala S, Reilly J, Searchinger T, Somerville C, Williams R (2009) Science 325:270–271

    Article  CAS  Google Scholar 

  5. Balat M, Balat H, Öz C (2008) Prog Energ Combust 34:551–573

    Article  CAS  Google Scholar 

  6. Roman-Leshkov Y, Barrett CJ, Liu ZY, Dumesic JA (2007) Nature 447:982–985

    Article  CAS  Google Scholar 

  7. U.S. Patent 4897497S, 1990

  8. U.S. Patent 5608105, 1997

  9. Bozell JJ (2010) Green Chem 12:525–728

    Article  Google Scholar 

  10. Texaco/NYSERDA/Biofine, Ethyl Levulinate D-975 Diesel Additive Test Program. Glenham, New York, 2000

  11. Horvath IT, Mehdi H, Fabos V, Boda L, Mika LT (2008) Green Chem 10:238–242

    Article  CAS  Google Scholar 

  12. Hayes DJ, Fitzpatrick S, Hayes MHB (2006) In: Biorefineries-industrial processes and products. Status quo and future directions, vol 1, Wiley-VCH Weinheim, pp 139–164

  13. Hamelinck CN, Faaij APC, den Uil H, Boerrigter H (2004) Energy 29:1743–1771

    Article  CAS  Google Scholar 

  14. Huber GW (2007) In: Breaking the chemical and engineering barriers to lignocellulosic biofuels: next generation hydrocarbon biorefineries. University of Massachusetts, Amherst. http://www.ecs.umass.edu/biofuels/Images/Roadmap2-08.pdf. Accessed 21 Feb 2011

  15. Huber GW, O’Connor P, Corma A (2007) Appl Catal A 329:120–129

    Article  CAS  Google Scholar 

  16. Alonso DM, Bond JQ, Serrano-Ruiz JC, Dumesic J (2010) Green Chem 12:992–999

    Article  CAS  Google Scholar 

  17. Bond JQ, Alonso DM, Wang D, West RM, Dumesic JA (2010) Science 327:1110–1114

    Article  CAS  Google Scholar 

  18. Rohm and Hass supplier information. http://www.dow.com/assets/attachments/business/process_chemicals/amberlyst/amberlyst_70/tds/amberlyst_70.pdf. Accessed 21 Feb 2011

  19. Spiewak BE, Dumesic JA (1996) Thermochim Acta 290:43–53

    Article  Google Scholar 

  20. Serrano-Ruiz JC, Wang D, Dumesic JA (2010) Green Chem 12:574–577

    Article  CAS  Google Scholar 

  21. Siril PR, Cross HE, Brown DR, Mol J (2008) Catal A Chem 279:63–68

    Article  CAS  Google Scholar 

  22. Lopez DE, Goodwin JG, Bruce DA (2007) J Catal 245:381–391

    Article  CAS  Google Scholar 

  23. Bringue R, Iborra M, Tejero J, Izquierdo JF, Cunill F, Fite C, Cruz VJ (2006) J Catal 244:33–42

    Article  CAS  Google Scholar 

  24. Medina E, Bringue R, Tejero J, Iborra M, Fite C (2010) Appl Catal A 374:41–47

    Article  CAS  Google Scholar 

  25. Braud C, Selegny E (1974) Separ Sci 9:13–19

    Article  CAS  Google Scholar 

  26. Benco L, Hafner J, Hutschka F, Toulhoat H (2003) J Phys Chem 107:9756–9762

    CAS  Google Scholar 

  27. Campbell KA, Janik MJ, Davis RJ, Neurock M (2005) Langmuir 21:4738–4745

    Article  CAS  Google Scholar 

  28. Bardin BB, Bordawekar SV, Neurock M, Davis RJ (1998) J Phys Chem B 102:10817–10825

    Article  CAS  Google Scholar 

  29. Mbaraka IK, Shanks BH (2005) J Catal 229:365–373

    Article  CAS  Google Scholar 

  30. Shen W, Gu Y, Xu HL, Dube D, Kaliaguine S (2010) Appl Catal A 377:1–8

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported through funding from the Defense Advanced Research Projects Agency (Surf-cat: Catalysts for Production of JP-8 range molecules from Lignocellulosic Biomass). The views, opinions, and/or findings contained in this article/presentation are those of the author/presenter and should not be interpreted as representing the official views or policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the Department of Defense. In addition, this work was supported in part by the U.S. Department of Energy Office of Basic Energy Sciences. The authors thank F. Vila for his expertise with DRIFTS, and R. Flessner and E. Saurer for microscopy support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Dumesic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alonso, D.M., Bond, J.Q., Wang, D. et al. Activation of Amberlyst-70 for Alkene Oligomerization in Hydrophobic Media. Top Catal 54, 447–457 (2011). https://doi.org/10.1007/s11244-011-9674-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-011-9674-1

Keywords

Navigation