Skip to main content
Log in

Factors in gold nanocatalysis: oxidation of CO in the non-scalable size regime

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Focusing on size-selected gold clusters consisting of up to 20 atoms, that is, in the size regime where properties cannot be obtained from those of the bulk material through scaling considerations, we discuss the current state of understanding pertaining to various factors that control the reactivity and catalytic activity of such nanostructures, using the CO oxidation reaction catalyzed by the gold nanoclusters adsorbed on MgO as a paradigm. These factors include the role of the metal-oxide support and its defects, the charge state of the cluster, structural fluxionality of the clusters, electronic size effects, the effect of an underlying metal support on the dimensionality, charging and chemical reactivity of gold nanoclusters adsorbed on the metal-supported metal-oxide, and the promotional effect of water. We show that through joined experimental and first-principles quantum mechanical calculations and simulations, a detailed picture of the reaction mechanism emerges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Landman (2005) Proc. Natl. Acad. Sci. USA 102 6671 Occurrence Handle15870210 Occurrence Handle10.1073/pnas.0408038102 Occurrence Handle1:CAS:528:DC%2BD2MXksVKgt7g%3D Occurrence Handle2005PNAS..102.6671L

    Article  PubMed  CAS  ADS  Google Scholar 

  2. U. Heiz U. Landman (2006) Nanocatalysis Springer New York

    Google Scholar 

  3. B. Hammer J.K. Norskov (1995) Nature 376 238 Occurrence Handle10.1038/376238a0 Occurrence Handle1:CAS:528:DyaK2MXntFSmurk%3D Occurrence Handle1995Natur.376..238H

    Article  CAS  ADS  Google Scholar 

  4. S.A.C. Carabineiro and D.T. Thompson, in Ref. 2, Chap. 6, p. 375

  5. N. Saliba D.H. Parker B.E. Koel (1998) Surf. Sci. 410 270 Occurrence Handle10.1016/S0039-6028(98)00309-4 Occurrence Handle1:CAS:528:DyaK1cXlslOqt7Y%3D

    Article  CAS  Google Scholar 

  6. M. Haruta (2002) Cattech 6 102 Occurrence Handle10.1023/A:1020181423055 Occurrence Handle1:CAS:528:DC%2BD38XmsFGrsLg%3D

    Article  CAS  Google Scholar 

  7. D.Y. Cha G. Parravan (1970) J. Catal. 18 200 Occurrence Handle10.1016/0021-9517(70)90178-8 Occurrence Handle1:CAS:528:DyaE3cXksVyqsLw%3D

    Article  CAS  Google Scholar 

  8. G.C. Bond, P.A. Sermon, G. Webb, D.A. Buchanan, P.B. Wells, J. Chem. Soc. Chem. Commun. (1973) 444

  9. M. Haruta N. Yamada T. Kobayashi S. Iijima (1989) J. Catal. 115 301 Occurrence Handle10.1016/0021-9517(89)90034-1 Occurrence Handle1:CAS:528:DyaL1MXhtVamsbY%3D

    Article  CAS  Google Scholar 

  10. M. Haruta (2004) Gold Bull. 37 27 Occurrence Handle1:CAS:528:DC%2BD2cXnt1emsL8%3D

    CAS  Google Scholar 

  11. B. Nkosi M.D. Adams N.J. Coville G.J. Hutchings (1991) J. Catal. 128 378 Occurrence Handle10.1016/0021-9517(91)90296-G Occurrence Handle1:CAS:528:DyaK3MXhsVCjtL0%3D

    Article  CAS  Google Scholar 

  12. B. Nkosi N.J. Coville G.J. Hutchings M.D. Adams J. Friedl F.E. Wagner (1991) J. Catal. 128 366 Occurrence Handle10.1016/0021-9517(91)90295-F Occurrence Handle1:CAS:528:DyaK3MXhsVCjtLw%3D

    Article  CAS  Google Scholar 

  13. C.T. Campbell (2004) Science 306 234 Occurrence Handle15472065 Occurrence Handle10.1126/science.1104246 Occurrence Handle1:CAS:528:DC%2BD2cXosVSntbo%3D

    Article  PubMed  CAS  Google Scholar 

  14. M.S. Chen D.W. Goodman (2004) Science 306 252 Occurrence Handle15331772 Occurrence Handle10.1126/science.1102420 Occurrence Handle1:CAS:528:DC%2BD2cXotFWnsLw%3D Occurrence Handle2004Sci...306..252C

    Article  PubMed  CAS  ADS  Google Scholar 

  15. G.C. Bond D.T. Thompson (2000) Gold Bull. 33 41 Occurrence Handle1:CAS:528:DC%2BD3MXmsFKgsw%3D%3D

    CAS  Google Scholar 

  16. V.A. Bondzie S.C. Parker C.T. Campbell (1999) Catal. Lett. 63 143 Occurrence Handle10.1023/A:1019012903936 Occurrence Handle1:CAS:528:DC%2BD3cXlsFOj

    Article  CAS  Google Scholar 

  17. V.A. Bondzie S.C. Parker C.T. Campbell (1999) J. Vac. Sci. Technol. A 17 1717 Occurrence Handle10.1116/1.581879 Occurrence Handle1:CAS:528:DyaK1MXktFyhu7o%3D Occurrence Handle1999JVST...17.1717B

    Article  CAS  ADS  Google Scholar 

  18. A. Sanchez S. Abbet U. Heiz W.D. Schneider H. Häkkinen R.N. Barnett U. Landman (1999) J. Phys. Chem. A 103 9573 Occurrence Handle10.1021/jp9935992 Occurrence Handle1:CAS:528:DyaK1MXntFalurc%3D

    Article  CAS  Google Scholar 

  19. B. Yoon H. Häkkinen U. Landman A.S. Worz J.M. Antonietti S. Abbet K. Judai U. Heiz (2005) Science 307 403 Occurrence Handle15662008 Occurrence Handle10.1126/science.1104168 Occurrence Handle1:CAS:528:DC%2BD2MXksFyjuw%3D%3D Occurrence Handle2005Sci...307..403Y

    Article  PubMed  CAS  ADS  Google Scholar 

  20. L.M. Molina B. Hammer (2005) Appl. Catal. A 291 21 Occurrence Handle10.1016/j.apcata.2005.01.050 Occurrence Handle1:CAS:528:DC%2BD2MXosVajsr4%3D

    Article  CAS  Google Scholar 

  21. O. Meerson G. Sitja C.R. Henry (2005) Eur. Phys. J. D 34 119 Occurrence Handle10.1140/epjd/e2005-00131-8 Occurrence Handle1:CAS:528:DC%2BD2MXmtFOqs7g%3D Occurrence Handle2005EPJD...34..119M

    Article  CAS  ADS  Google Scholar 

  22. M. Haruta S. Tsubota T. Kobayashi H. Kageyama M.J. Genet B. Delmon (1993) J. Catal. 144 175 Occurrence Handle10.1006/jcat.1993.1322 Occurrence Handle1:CAS:528:DyaK2cXhs1GitQ%3D%3D

    Article  CAS  Google Scholar 

  23. M. Date M. Haruta (2001) J. Catal. 201 221 Occurrence Handle10.1006/jcat.2001.3254 Occurrence Handle1:CAS:528:DC%2BD3MXkvF2jsb4%3D

    Article  CAS  Google Scholar 

  24. M. Date M. Okumura S. Tsubota M. Haruta (2004) Angew. Chem. Int. Ed. 43 2129 Occurrence Handle10.1002/anie.200453796 Occurrence Handle1:CAS:528:DC%2BD2cXjsFSjsb8%3D

    Article  CAS  Google Scholar 

  25. M. Valden , X. Lai and D.W. Goodman, Science 281 (1998) 1647. See also T.V. Choudhary and D.W. Goodman, Appl. Catal. A 291 (2005) 32, and a recent review by M.S. Chen and D.W. Goodman, Accounts Chem. Res. 39 (2006) 739.

  26. B. Yoon H. Häkkinen U. Landman (2003) J. Phys. Chem. A 107 4066 Occurrence Handle10.1021/jp027596s Occurrence Handle1:CAS:528:DC%2BD3sXjtVWnsL0%3D

    Article  CAS  Google Scholar 

  27. N. Lopez J.K. Norskov (2002) J. Am. Chem. Soc. 124 11262 Occurrence Handle12236728 Occurrence Handle10.1021/ja026998a Occurrence Handle1:CAS:528:DC%2BD38Xms1Wntb8%3D

    Article  PubMed  CAS  Google Scholar 

  28. G. Mills M.S. Gordon H. Metiu (2002) Chem. Phys. Lett. 359 493 Occurrence Handle10.1016/S0009-2614(02)00746-7 Occurrence Handle1:CAS:528:DC%2BD38Xlt1GgsLc%3D

    Article  CAS  Google Scholar 

  29. L.M. Molina B. Hammer (2003) Phys. Rev. Lett. 90 206102 Occurrence Handle12785908 Occurrence Handle10.1103/PhysRevLett.90.206102 Occurrence Handle1:STN:280:DC%2BD3s3mtlaisw%3D%3D Occurrence Handle2003PhRvL..90t6102M

    Article  PubMed  CAS  ADS  Google Scholar 

  30. L.M. Molina B. Hammer (2004) Phys. Rev. B 69 155424 Occurrence Handle10.1103/PhysRevB.69.155424 Occurrence Handle2004PhRvB..69o5424M

    Article  ADS  Google Scholar 

  31. R. Meyer C. Lemire S. Shaikhutdinov H.J. Freund (2004) Gold Bull. 37 72 Occurrence Handle1:CAS:528:DC%2BD2cXnt1emsLg%3D

    CAS  Google Scholar 

  32. C. Lemire R. Meyer S. Shaikhutdinov H.J. Freund (2004) Angew. Chem. Int. Ed. 43 118 Occurrence Handle10.1002/anie.200352538

    Article  Google Scholar 

  33. C. Lemire R. Meyer S.K. Shaikhutdinov H.J. Freund (2004) Surf. Sci. 552 27 Occurrence Handle10.1016/j.susc.2004.01.029 Occurrence Handle1:CAS:528:DC%2BD2cXhs1Oksb4%3D Occurrence Handle2004SurSc.552...27L

    Article  CAS  ADS  Google Scholar 

  34. W.A. deHeer (1993) Rev. Mod. Phys. 65 611 Occurrence Handle10.1103/RevModPhys.65.611 Occurrence Handle1:CAS:528:DyaK2cXhsVCgu70%3D Occurrence Handle1993RvMP...65..611D

    Article  CAS  ADS  Google Scholar 

  35. T.G. Dietz M.A. Duncan D.E. Powers R.E. Smalley (1981) J. Chem. Phys. 74 6511 Occurrence Handle10.1063/1.440991 Occurrence Handle1:CAS:528:DyaL3MXksV2lsL4%3D Occurrence Handle1981JChPh..74.6511D

    Article  CAS  ADS  Google Scholar 

  36. U. Heiz F. Vanolli L. Trento W.D. Schneider (1997) Rev. Sci. Instrum. 68 1986 Occurrence Handle10.1063/1.1148113 Occurrence Handle1:CAS:528:DyaK2sXjtlers7s%3D Occurrence Handle1997RScI...68.1986H

    Article  CAS  ADS  Google Scholar 

  37. U. Heiz W.D. Schneider (2001) Crit. Rev. Solid State Mater. Sci. 26 25 Occurrence Handle10.1080/20014091104198

    Article  Google Scholar 

  38. C.L. Cleveland U. Landman (1992) Science 257 355 Occurrence Handle10.1126/science.257.5068.355 Occurrence Handle1:CAS:528:DyaK38XltFyrsLo%3D Occurrence Handle1992Sci...257..355C

    Article  CAS  ADS  Google Scholar 

  39. H.-P. Cheng U. Landman (1993) Science 260 1304 Occurrence Handle10.1126/science.260.5112.1304 Occurrence Handle1:CAS:528:DyaK3sXksFKrurc%3D Occurrence Handle1993Sci...260.1304C

    Article  CAS  ADS  Google Scholar 

  40. H-.P. Cheng U. Landman (1994) J. Phys. Chem. 98 3527 Occurrence Handle10.1021/j100064a040 Occurrence Handle1:CAS:528:DyaK2cXjtlWrurw%3D

    Article  CAS  Google Scholar 

  41. M. Moseler H. Häkkinen U. Landman (2002) Phys. Rev. Lett. 89 033401 Occurrence Handle12144392 Occurrence Handle10.1103/PhysRevLett.89.176103

    Article  PubMed  Google Scholar 

  42. K. Bromann H. Brune C. Felix W. Harbich R. Monot J. Buttet K. Kern (1997) Surf. Sci. 377 1051 Occurrence Handle10.1016/S0039-6028(96)01544-0

    Article  Google Scholar 

  43. X. Tong L. Benz P. Kemper H. Metiu M.T. Bowers S.K. Buratto (2005) J. Am. Chem. Soc. 127 13516 Occurrence Handle16190713 Occurrence Handle10.1021/ja052778w Occurrence Handle1:CAS:528:DC%2BD2MXpsleqtb0%3D

    Article  PubMed  CAS  Google Scholar 

  44. S. Fedrigo W. Harbich J. Buttet (1998) Phys. Rev. B 58 7428 Occurrence Handle10.1103/PhysRevB.58.7428 Occurrence Handle1:CAS:528:DyaK1cXmtVamt7g%3D Occurrence Handle1998PhRvB..58.7428F

    Article  CAS  ADS  Google Scholar 

  45. K. Judai S. Abbet A.S. Wörz U. Heiz C.R. Henry (2004) J. Am. Chem. Soc. 126 2732 Occurrence Handle14995189 Occurrence Handle10.1021/ja039037k Occurrence Handle1:CAS:528:DC%2BD2cXht1Wisbg%3D

    Article  PubMed  CAS  Google Scholar 

  46. J.M. Antonietti M. Michalski U. Heiz H. Jones K.H. Lim N. Rösch A. Vitto ParticleDel G. Pacchioni (2005) Phys. Rev. Lett. 94 213402 Occurrence Handle16090321 Occurrence Handle10.1103/PhysRevLett.94.213402 Occurrence Handle2005PhRvL..94u3402A

    Article  PubMed  ADS  Google Scholar 

  47. C. Di Valentin A. Vitto ParticleDel G. Pacchioni S. Abbet A.S. Wörz K. Judai U. Heiz (2002) J. Phys. Chem. B 106 11961 Occurrence Handle10.1021/jp026399q Occurrence Handle1:CAS:528:DC%2BD38XotFSrtr0%3D

    Article  CAS  Google Scholar 

  48. M. Sterrer E. Fischbach T. Risse H.J. Freund (2005) Phys. Rev. Lett. 94 186101 Occurrence Handle15904384 Occurrence Handle10.1103/PhysRevLett.94.186101 Occurrence Handle2005PhRvL..94r6101S

    Article  PubMed  ADS  Google Scholar 

  49. S. Schintke W.D. Schneider (2004) J. Phys. Condens. Matter 16 R49 Occurrence Handle10.1088/0953-8984/16/4/R02 Occurrence Handle1:CAS:528:DC%2BD2cXitVWrsb0%3D

    Article  CAS  Google Scholar 

  50. M. Sterrer M. Heyde M. Novicki N. Nilius T. Risse H.P. Rust G. Pacchioni H.J. Freund (2006) J. Phys. Chem. B 110 46 Occurrence Handle16471496 Occurrence Handle10.1021/jp056306f Occurrence Handle1:CAS:528:DC%2BD2MXht1yrs7nL

    Article  PubMed  CAS  Google Scholar 

  51. D. Peterka C. Tegenkamp K.M. Schröder W. Ernst H. Pfnur (1999) Surf. Sci. 431 146 Occurrence Handle10.1016/S0039-6028(99)00446-X Occurrence Handle1:CAS:528:DyaK1MXltVyqs70%3D

    Article  CAS  Google Scholar 

  52. G. Blyholder (1964) J. Phys. Chem. 68 2772 Occurrence Handle10.1021/j100792a006 Occurrence Handle1:CAS:528:DyaF2cXkslarurk%3D

    Article  CAS  Google Scholar 

  53. H. Häkkinen W. Abbet A. Sanchez U. Heiz U. Landman (2003) Angew. Chem. Int. Ed. 42 1297 Occurrence Handle10.1002/anie.200390334

    Article  Google Scholar 

  54. C. Zhang B. Yoon U. Landman (2007) J. Am. Chem. Soc. 129 2228 Occurrence Handle17266316 Occurrence Handle10.1021/ja0684545 Occurrence Handle1:CAS:528:DC%2BD2sXhtlemt7s%3D

    Article  PubMed  CAS  Google Scholar 

  55. This scheme is commonly employed in experimental studies of Au nanstructures adsorbed on MgO films; see M.-C. Wu, J.S. Corncillc, C.A. Estrada, J.W. He and D.W. Goodman, Chem. Phys. Lett. 182 (1991) 472, and refs. 2 and 18.

    Google Scholar 

  56. D. Ricci A. Bongiorno G. Pacchioni U. Landman (2006) Phys. Rev. Lett. 97 36106 Occurrence Handle10.1103/PhysRevLett.97.036106

    Article  Google Scholar 

  57. G. Kresse J. Hafner (1993) Phys. Rev. B 47 R558 Occurrence Handle10.1103/PhysRevB.47.558 Occurrence Handle1993PhRvB..47..558K

    Article  ADS  Google Scholar 

  58. G. Kresse J. Furthmuller (1996) Phys. Rev. B 54 11169 Occurrence Handle10.1103/PhysRevB.54.11169 Occurrence Handle1:CAS:528:DyaK28Xms1Whu7Y%3D Occurrence Handle1996PhRvB..5411169K

    Article  CAS  ADS  Google Scholar 

  59. R.N. Barnett U. Landman (1993) Phys. Rev. B 48 2081 Occurrence Handle10.1103/PhysRevB.48.2081 Occurrence Handle1:CAS:528:DyaK3sXmtFWjsr8%3D Occurrence Handle1993PhRvB..48.2081B

    Article  CAS  ADS  Google Scholar 

  60. J.P. Perdew J.A. Chevary S.H. Vosko K.A. Jackson M.R. Pederson D.J. Singh C. Fiolhais (1992) Phys. Rev. B 46 6671 Occurrence Handle10.1103/PhysRevB.46.6671 Occurrence Handle1:CAS:528:DyaK38XlvFyks7c%3D Occurrence Handle1992PhRvB..46.6671P

    Article  CAS  ADS  Google Scholar 

  61. D. Vanderbilt (1990) Phys. Rev. B 41 7892 Occurrence Handle10.1103/PhysRevB.41.7892 Occurrence Handle1990PhRvB..41.7892V

    Article  ADS  Google Scholar 

  62. L. Giordano M. Baistrocchi G. Pacchioni (2005) Phys. Rev. B 72 115403 Occurrence Handle10.1103/PhysRevB.72.115403 Occurrence Handle2005PhRvB..72k5403G

    Article  ADS  Google Scholar 

  63. L. Giordano J. Goniakowski G. Pacchioni (2003) Phys. Rev. B 67 045410 Occurrence Handle10.1103/PhysRevB.67.045410 Occurrence Handle2003PhRvB..67d5410G

    Article  ADS  Google Scholar 

  64. J. Li, X. Li, J. H.-Zhai and L.-S. Wang, Science 299 (2003) 864; X. P. Xing, B. Yoon, U. Landman and J.H. Parks, Phys. Rev. B 74 (2006) 165423; B. Yoon, P. Koskinen, B. Huber, O. Kostko, B. Von Issendorff, H. Häkkinen, M. Moseler and U. Landman, Chem. Phys. Chem. 8 (2007) 157

  65. A. Bongiorno U. Landman (2005) Phys. Rev. Lett. 95 106102 Occurrence Handle16196944 Occurrence Handle10.1103/PhysRevLett.95.106102 Occurrence Handle2005PhRvL..95j6102B

    Article  PubMed  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uzi Landman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landman, U., Yoon, B., Zhang, C. et al. Factors in gold nanocatalysis: oxidation of CO in the non-scalable size regime. Top Catal 44, 145–158 (2007). https://doi.org/10.1007/s11244-007-0288-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-007-0288-6

Keywords

Navigation