Skip to main content
Log in

Low temperature CO oxidation on Au(111) and the role of adsorbed water

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

This paper presents results of an investigation of low-temperature CO oxidation and the role of moisture on an atomic oxygen covered Au(111) surface by employing molecular beam scattering techniques under ultrahigh vacuum (UHV) conditions. The effect of atomic oxygen precoverage on CO oxidation was examined at sample temperatures as low as 77 K. Prompt CO2 production was observed when the CO beam impinges on the sample followed by a rapid decay of CO2 production in all cases. At oxygen precoverages above 0.5 ML, CO2 production decreases with increasing oxygen precoverage primarily due to the decrease in CO uptake. CO oxidation at 77 K goes through a precursor mediated reaction mechanism, where CO is in a precursor or trapped state and oxygen atoms are in a chemisorbed state. The role of adsorbed water was studied by using isotopically labeled water [H 182 O] to distinguish the oxygen species from that used in oxygen atom exposures [16O]. Evidence is presented that shows activated water or OH groups formed from water can directly participate in oxidizing CO on an atomic oxygen covered Au(111) surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.C. Bond D.T. Thompson (1999) Catal. Rev. –Sci. Eng. 41 319 Occurrence Handle10.1081/CR-100101171 Occurrence Handle1:CAS:528:DyaK1MXmvFehsLk%3D

    Article  CAS  Google Scholar 

  2. M. Haruta N. Yamada T. Kobayashi S. Iijima (1989) J. Catal. 115 301 Occurrence Handle10.1016/0021-9517(89)90034-1 Occurrence Handle1:CAS:528:DyaL1MXhtVamsbY%3D

    Article  CAS  Google Scholar 

  3. M. Haruta S. Tsubota T. Kobayashi H. Kageyama M.J. Genet B. Delmon (1993) J. Catal. 144 175 Occurrence Handle10.1006/jcat.1993.1322 Occurrence Handle1:CAS:528:DyaK2cXhs1GitQ%3D%3D

    Article  CAS  Google Scholar 

  4. M. Okumura S. Nakamura S. Tsubota T. Nakamura M. Azuma M. Haruta (1998) Catal. Lett. 51 53 Occurrence Handle10.1023/A:1019020614336 Occurrence Handle1:CAS:528:DyaK1cXjtlSht70%3D

    Article  CAS  Google Scholar 

  5. J.-D. Grunwaldt M. Maciejewski O.S. Becker P. Fabrizioli A. Baiker (1999) J. Catal. 186 458 Occurrence Handle10.1006/jcat.1999.2564 Occurrence Handle1:CAS:528:DyaK1MXlvFahsbc%3D

    Article  CAS  Google Scholar 

  6. F. Boccuzzi A. Chiorino (2000) J. Phys. Chem. B 104 5414 Occurrence Handle10.1021/jp000749w Occurrence Handle1:CAS:528:DC%2BD3cXjtlGqsL4%3D

    Article  CAS  Google Scholar 

  7. B. Schumacher V. Plzak M. Kinne R.J. Behm (2003) Catal. Lett. 89 109 Occurrence Handle10.1023/A:1024731812974 Occurrence Handle1:CAS:528:DC%2BD3sXlsVKms7g%3D

    Article  CAS  Google Scholar 

  8. T. Hayashi K. Tanaka M. Haruta (1998) J. Catal. 178 566 Occurrence Handle10.1006/jcat.1998.2157 Occurrence Handle1:CAS:528:DyaK1cXmtlChsLk%3D

    Article  CAS  Google Scholar 

  9. B.S. Uphade T. Akita T. Nakamura M. Haruta (2002) J. Catal. 209 331 Occurrence Handle10.1006/jcat.2002.3642 Occurrence Handle1:CAS:528:DC%2BD38XltVagur4%3D

    Article  CAS  Google Scholar 

  10. A. Ueda M. Haruta (1999) Gold Bull. 32 3 Occurrence Handle1:CAS:528:DyaK1MXlt1SltLY%3D

    CAS  Google Scholar 

  11. J.L. Gong R.A. Ojifinni T.S. Kim J.M. White C.B. Mullins (2006) J. Am. Chem. Soc. 128 9012 Occurrence Handle16834356 Occurrence Handle10.1021/ja062624w Occurrence Handle1:CAS:528:DC%2BD28Xmt12mu78%3D

    Article  PubMed  CAS  Google Scholar 

  12. M. Haruta (2002) CATTECH 6 102 Occurrence Handle10.1023/A:1020181423055 Occurrence Handle1:CAS:528:DC%2BD38XmsFGrsLg%3D

    Article  CAS  Google Scholar 

  13. R. Meyer C. Lemire Sh.K. Shaikhutdinov H.-J. Freund (2004) Gold Bull. 37 72 Occurrence Handle1:CAS:528:DC%2BD2cXnt1emsLg%3D

    CAS  Google Scholar 

  14. T.S. Kim J.D. Stiehl C.T. Reeves R.J. Meyer C.B. Mullins (2003) J. Am. Chem. Soc. 125 2018 Occurrence Handle12590508 Occurrence Handle10.1021/ja028719p Occurrence Handle1:CAS:528:DC%2BD3sXnt1WgtA%3D%3D

    Article  PubMed  CAS  Google Scholar 

  15. M. Date M. Okumura S. Tsubota M. Haruta (2004) Angew. Chem.-Int. Edit. 43 2129 Occurrence Handle10.1002/anie.200453796 Occurrence Handle1:CAS:528:DC%2BD2cXjsFSjsb8%3D

    Article  CAS  Google Scholar 

  16. F. Boccuzzi A. Chiorino (2000) J. Phys. Chem. B 104 5414 Occurrence Handle10.1021/jp000749w Occurrence Handle1:CAS:528:DC%2BD3cXjtlGqsL4%3D

    Article  CAS  Google Scholar 

  17. V.A. Bondzie S.C. Parker C.T. Campbell (1999) Catal. Lett. 63 143 Occurrence Handle10.1023/A:1019012903936 Occurrence Handle1:CAS:528:DC%2BD3cXlsFOj

    Article  CAS  Google Scholar 

  18. Outka D.A., Madix R.J. (1987) Surf. Sci. 179:351, and references therein

  19. J.M. Gottfried K.J. Schmidt S.L.M. Schroeder K. Christmann (2003) Surf. Sci. 525 197 Occurrence Handle10.1016/S0039-6028(02)02559-1 Occurrence Handle1:CAS:528:DC%2BD3sXpsFChtg%3D%3D

    Article  CAS  Google Scholar 

  20. Gottfried J.M., Ph. D. thesis, the Freie Universität Berlin (2003)

  21. M.A. Lazaga D.T. Wickham D.H. Parker G.N. Kastanas B.E. Koel (1993) ACS Sym. Ser. 523 90 Occurrence Handle1:CAS:528:DyaK3sXlvV2nsLw%3D Occurrence Handle10.1021/bk-1993-0523.ch008

    Article  CAS  Google Scholar 

  22. J.M.C. Soares M. Bowker (2005) Appl. Catal. A 291 136 Occurrence Handle10.1016/j.apcata.2005.02.049 Occurrence Handle1:CAS:528:DC%2BD2MXosVWqu74%3D

    Article  CAS  Google Scholar 

  23. J.D. Stiehl J.L. Gong R.A. Ojifinni T.S. Kim S.M. McClure C.B. Mullins (2006) J. Phys. Chem. B 110 20337 Occurrence Handle17034215 Occurrence Handle10.1021/jp062766c Occurrence Handle1:CAS:528:DC%2BD28XpslKitLs%3D

    Article  PubMed  CAS  Google Scholar 

  24. J.D. Stiehl T.S. Kim S.M. McClure C.B. Mullins (2004) J. Am. Chem. Soc. 126 13574 Occurrence Handle15493888 Occurrence Handle10.1021/ja046390x Occurrence Handle1:CAS:528:DC%2BD2cXnvFShsbw%3D

    Article  PubMed  CAS  Google Scholar 

  25. T.S. Kim J.L. Gong R.A. Ojifinni J.M. White C.B. Mullins (2006) J. Am. Chem. Soc. 128 6282 Occurrence Handle16683769 Occurrence Handle10.1021/ja058263m Occurrence Handle1:CAS:528:DC%2BD28XjslKgurg%3D

    Article  PubMed  CAS  Google Scholar 

  26. J.E. Pollard (1992) Rev. Sci. Instrum. 63 1771 Occurrence Handle10.1063/1.1143811 Occurrence Handle1:CAS:528:DyaK38XhtFeru70%3D Occurrence Handle1992RScI...63.1771P

    Article  CAS  ADS  Google Scholar 

  27. J.D. Stiehl T.S. Kim S.M. McClure C.B. Mullins (2004) J. Am. Chem. Soc. 126 1606 Occurrence Handle14871071 Occurrence Handle10.1021/ja046390x Occurrence Handle1:CAS:528:DC%2BD2cXnvFShsbw%3D

    Article  PubMed  CAS  Google Scholar 

  28. J.D. Stiehl T.S. Kim S.M. McClure C.B. Mullins (2005) J. Phys. Chem. B 109 6136 Occurrence Handle10.1021/jp044553y Occurrence Handle1:CAS:528:DC%2BD2MXit1Cltbs%3D

    Article  CAS  Google Scholar 

  29. N. Saliba D.H. Parker B.E. Koel (1998) Surf. Sci. 410 270 Occurrence Handle10.1016/S0039-6028(98)00309-4 Occurrence Handle1:CAS:528:DyaK1cXlslOqt7Y%3D

    Article  CAS  Google Scholar 

  30. C.A. Becker J.P. Cowin L. Wharton D.J. Auerbach (1977) J. Chem. Phys. 67 3394 Occurrence Handle10.1063/1.435289 Occurrence Handle1:CAS:528:DyaE2sXlvV2qtbk%3D Occurrence Handle1977JChPh..67.3394B

    Article  CAS  ADS  Google Scholar 

  31. C.B. Mullins C.T. Rettner D.J. Auerbach (1991) J. Chem. Phys. 95 8649 Occurrence Handle10.1063/1.461244 Occurrence Handle1:CAS:528:DyaK38XivVOmtg%3D%3D Occurrence Handle1991JChPh..95.8649M

    Article  CAS  ADS  Google Scholar 

  32. J.D. Stiehl T.S. Kim C.T. Reeves R.J. Meyer C.B. Mullins (2004) J. Phys. Chem. B 108 7917 Occurrence Handle10.1021/jp0496102 Occurrence Handle1:CAS:528:DC%2BD2cXktVamtL4%3D

    Article  CAS  Google Scholar 

  33. J. Harris B. Kasemo (1981) Surf. Sci. 105 L281 Occurrence Handle10.1016/0039-6028(81)90004-2 Occurrence Handle1:CAS:528:DyaL3MXitFGit7s%3D

    Article  CAS  Google Scholar 

  34. M. Valden X. Lai D.W. Goodman (1998) Science 281 1647 Occurrence Handle9733505 Occurrence Handle10.1126/science.281.5383.1647 Occurrence Handle1:CAS:528:DyaK1cXmtVSqu7w%3D Occurrence Handle1998Sci...281.1647V

    Article  PubMed  CAS  ADS  Google Scholar 

  35. T. Rockmann C.A.M. Brenninkmeijer G. Sauerssig P. Bergamaschi J.N. Crowley H. Fischer P.J. Cruutzen (1998) Science 281 544 Occurrence Handle9677193 Occurrence Handle10.1126/science.281.5376.544 Occurrence Handle1:CAS:528:DyaK1cXkvFCltLg%3D Occurrence Handle1998Sci...281..544R

    Article  PubMed  CAS  ADS  Google Scholar 

  36. B.E. Hayden M.E. Rendall O. South (2003) J. Am. Chem. Soc. 125 7738 Occurrence Handle12812515 Occurrence Handle10.1021/ja0214781 Occurrence Handle1:CAS:528:DC%2BD3sXktVCjsr8%3D

    Article  PubMed  CAS  Google Scholar 

  37. T. Lei M.S. Zei G. Ertl (2005) Surf. Sci. 581 142 Occurrence Handle10.1016/j.susc.2005.02.037 Occurrence Handle1:CAS:528:DC%2BD2MXjtFyrurs%3D Occurrence Handle2005SurSc.581..142L

    Article  CAS  ADS  Google Scholar 

  38. M. Bowker M.A. Barteau R.J. Madix (1980) Surf. Sci. 92 528 Occurrence Handle10.1016/0039-6028(80)90221-6 Occurrence Handle1:CAS:528:DyaL3cXktFemu7o%3D

    Article  CAS  Google Scholar 

  39. J. Bergeld B. Kasemo D.V. Chakarov (2001) Surf. Sci. 495 L815 Occurrence Handle10.1016/S0039-6028(01)01598-9 Occurrence Handle1:CAS:528:DC%2BD3MXosl2iur4%3D

    Article  CAS  Google Scholar 

  40. R.A. Ojifinni, J.L. Gong, T.S. Kim, J.M. White, and C.B. Mullins, to be submitted

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Buddie Mullins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, J., Ojifinni, R.A., Kim, T.S. et al. Low temperature CO oxidation on Au(111) and the role of adsorbed water. Top Catal 44, 57–63 (2007). https://doi.org/10.1007/s11244-007-0278-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-007-0278-8

Keywords

Navigation