Skip to main content
Log in

Against digital ontology

  • Published:
Synthese Aims and scope Submit manuscript

Abstract

The paper argues that digital ontology (the ultimate nature of reality is digital, and the universe is a computational system equivalent to a Turing Machine) should be carefully distinguished from informational ontology (the ultimate nature of reality is structural), in order to abandon the former and retain only the latter as a promising line of research. Digital vs. analogue is a Boolean dichotomy typical of our computational paradigm, but digital and analogue are only “modes of presentation” of Being (to paraphrase Kant), that is, ways in which reality is experienced or conceptualised by an epistemic agent at a given level of abstraction. A preferable alternative is provided by an informational approach to structural realism, according to which knowledge of the world is knowledge of its structures. The most reasonable ontological commitment turns out to be in favour of an interpretation of reality as the totality of structures dynamically interacting with each other. The paper is the first part (the pars destruens) of a two-part piece of research. The pars construens, entitled “A Defence of Informational Structural Realism”, is developed in a separate article, also published in this journal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ball, P. (2002). Universe is a computer. Nature News, June 3. doi:10.1038/news020527-16.

  • Chaitin G.J. (2005) Meta math!: The quest for omega. Pantheon Books, New York

    Google Scholar 

  • Chakravartty A. (2003) The structuralist conception of objects. Philosophy of Science 70(5): 867–878

    Article  Google Scholar 

  • Chalmers D.J. (1996) The conscious mind: In search of a fundamental theory. Oxford University Press, New York

    Google Scholar 

  • Dedekind, R. (1963). Continuity and irrational numbers, in essays on the theory of numbers. New York: Dover, originally published in 1872.

  • Roever W.-P., Engelhardt K. (1998) Data refinement: Model-oriented proof methods and their comparison. Cambridge University Press, Cambridge

    Google Scholar 

  • Feynman, R. P. (1992). The character of physical law. London: Penguin, originally published in 1965.

  • Floridi, L. (2004). Informational realism. In J. Weckert & Y. Al-Saggaf (Eds.), Computers and Philosophy 2003—Selected Papers from the Computer and Philosophy Conference (Cap 2003) Acs—Conferences in Research and Practice in Information Technology, pp. 7–12.

  • Floridi L. (2008) A defence of informational structural realism. Synthese 161(2): 219–253

    Article  Google Scholar 

  • Floridi L., Sanders J.W. (2004) The method of abstraction. In: Negrotti M.(eds) Yearbook of the artificial—Nature, culture and technology, models in contemporary sciences. Peter Lang, Bern, pp 177–220

    Google Scholar 

  • Fredkin, E. (1992). Finite nature. In Proceedings of the XXVIIth Rencontre de Moriond, March 22–28, 1992, Les Arcs, Savoie, France. Editions Frontieres: Gif-sur-Yvette, France.

  • Fredkin E. (2003) The digital perspective. International Journal of Theoretical Physics 42(2): 145

    Article  Google Scholar 

  • Fredkin, E. (2003b). An introduction to digital philosophy. International Journal of Theoretical Physics, 42(2), 189–247. Also available online at http://digitalphilosophy.org/

  • Fredkin, E. (online). Digital mechanics—An informational process based on reversible universal cellular automata. http://www.digitalphilosophy.org/dm_paper.htm

  • French, S. (2001). Symmetry, structure and the constitution of objects. Symmetries in Physics, New Reflections: Oxford Workshop, January 2001, Oxford.

  • Goodman N. (1968) Languages of art: An approach to a theory of symbols. Indianapolis, Bobbs-Merrill

    Google Scholar 

  • Gower B. (2000) Cassirer, Schlick and ‘Structural’ realism: The philosophy of the exact sciences in the background to early logical empiricism. British Journal for the History of Philosophy 8(1): 71–106

    Article  Google Scholar 

  • Hoare C.A.R., He J. (1998) Unifying theories of programming. Prentice Hall, London

    Google Scholar 

  • Holden T.A. (2004) The architecture of matter: Galileo to Kant. Clarendon Press, Oxford

    Book  Google Scholar 

  • Hyötyniemi, H. (1996). Turing machines are recurrent neural networks. In J. Alander, T. Honkela, & M. Jakobsson (Eds.), STeP’96—Genes, nets and symbols (pp. 13–24). Helsinki, Finland: Publications of the Finnish Artificial Intelligence Society (FAIS).

  • Kant I. (1998) Critique of pure reason repr. w. corr. Cambridge University Press, Cambridge

    Google Scholar 

  • Ladyman J. (1998) What is structural realism?. Studies in History and Philosophy of Science 29((3): 409–424

    Article  Google Scholar 

  • Langton R. (2004) Elusive knowledge of things in themselves. Australasian Journal of Philosophy 82(1): 129–136

    Article  Google Scholar 

  • Lesne A. (2007) The discrete versus continuous controversy in physics. Mathematical Structures in Computer Science 17(2): 185–223

    Article  Google Scholar 

  • Lewis D. (1971) Analog and digital. Nous 5(3): 321–327

    Google Scholar 

  • Lloyd S. (2002) Computational capacity of the universe. Physical Review Letters 88(23): 237901–237904

    Article  Google Scholar 

  • Lloyd S. (2006) Programming the universe: From the Big Bang to quantum computers. Jonathan Cape, London

    Google Scholar 

  • Margolus N. (2003) Looking at nature as a computer. International Journal of Theoretical Physics 42(2): 309–327

    Article  Google Scholar 

  • Müller, V. C. (forthcoming). What is a digital state?

  • Pais, A. (2005). Subtle is the lord: The science and the life of Albert Einstein (Oxford; New York: Oxford University Press), originally published in 1982, republished with a new foreword by Sir Roger Penrose.

  • Petrov, P. (2003). Church-Turing thesis is almost equivalent to Zuse-Fredkin Thesis (an argument in support of Zuse-Fredkin Thesis). In Proceedings of the 3rd WSEAS International Conference on Systems Theory and Scientific Computation, Special Session on Cellular Automata and Applications (ISTASC’03), Rhodes Island, Greece.

  • Saunders S. (2003) Structural realism, again. Synthese 136(1): 127–133

    Article  Google Scholar 

  • Sayre K.M. (1976) Cybernetics and the philosophy of mind. Routledge and Kegan Paul, London

    Google Scholar 

  • Schmidhuber, J. (1997). A computer scientist’s view of life, the universe, and everything. Lecture Notes in Computer Science, 1337, 201–208.

    Article  Google Scholar 

  • Schmidhuber, J. (forthcoming). All computable universes. Spektrum der Wissenschaft (German edition of Scientific American).

  • Shannon, C. E., & Weaver, W. (1949 rep. 1998). The mathematical theory of communication. Urbana: University of Illinois Press.

  • Siegelmann H.T. (1998) Neural networks and analog computation: Beyond the turing limit. Birkhèauser, Boston

    Google Scholar 

  • Steinhart E. (1998) Digital metaphysics. In: Bynum T., Moor J.(eds) The digital phoenix: How computers are changing philosophy.. Blackwell, New York, pp 117–134

    Google Scholar 

  • Steinhart, E. (2003). The physics of information. In L. Floridi (Ed.), Blackwell guide to the philosophy of computing and information. Oxford: Blackwell, chapter 13.

  • Toffoli T. (2003) A digital perspective and the quest for substrate-universal behaviors. International Journal of Theoretical Physics 42: 147–151

    Article  Google Scholar 

  • ’t Hooft G. (1997) In search of the ultimate building blocks. Cambridge University Press, Cambridge

    Google Scholar 

  • ’t Hooft G. (2002) How does god play dice? (Pre-)determinism at the Planck scale. In: Bertlmann R.A., Zeilinger A.(eds) Quantum [Un]speakables, from bell to quantum information.. Springer Verlag, Berlin, pp 307–316

    Google Scholar 

  • ’t Hooft G. (2003) Can quantum mechanics be reconciled with cellular automata?. International Journal of Theoretical Physics 42: 349–354

    Article  Google Scholar 

  • ’t Hooft G. (2005) Does god play dice?. Physics World 18(12): 21–23

    Google Scholar 

  • Turing A.M. (1950) Computing machinery and intelligence. Minds and Machines 59: 433–460

    Google Scholar 

  • Von Neumann J. (1966) Theory of self-reproducing automata. University of Illinois Press, Urbana, London

    Google Scholar 

  • Weinberg, S. (2002). Is the universe a computer? The New York Review of Books.

  • Wheeler, J. A. (1990). Information, physics, quantum: The search for links. In W. H. Zureck (Ed.), Complexity entropy, and the physics of information. Redwood City, CA: Addison Wesley.

  • Wolfram S. (2002) A new kind of science. Wolfram Media, Champaign, IL

    Google Scholar 

  • Worrall J. (1989) Structural realism: The best of both worlds?. Dialectica 43: 99–124

    Article  Google Scholar 

  • Zuse K. (1967) Rechnender Raum. Elektronische Datenverarbeitung 8: 336–344

    Google Scholar 

  • Zuse, K. (1969). Rechnender Raum. Braunschweig: Vieweg. Eng. tr. with the title Calculating Space, MIT Technical Translation AZT-70-164-GEMIT. Cambridge, MA: Massachusetts Institute of Technology (Project MAC), 1970.

  • Zuse K. (1993) The computer, my life. Springer-Verlag, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano Floridi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Floridi, L. Against digital ontology. Synthese 168, 151–178 (2009). https://doi.org/10.1007/s11229-008-9334-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-008-9334-6

Keywords

Navigation