Skip to main content
Log in

An Approach to Glivenko’s Theorem in Algebraizable Logics

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

In a classical paper [15] V. Glivenko showed that a proposition is classically demonstrable if and only if its double negation is intuitionistically demonstrable. This result has an algebraic formulation: the double negation is a homomorphism from each Heyting algebra onto the Boolean algebra of its regular elements. Versions of both the logical and algebraic formulations of Glivenko’s theorem, adapted to other systems of logics and to algebras not necessarily related to logic can be found in the literature (see [2, 9, 8, 14] and [13, 7, 14]). The aim of this paper is to offer a general frame for studying both logical and algebraic generalizations of Glivenko’s theorem. We give abstract formulations for quasivarieties of algebras and for equivalential and algebraizable deductive systems and both formulations are compared when the quasivariety and the deductive system are related. We also analyse Glivenko’s theorem for compatible expansions of both cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agliano, P., An algebraic investigation of linear logic, Rapporto Matematico n. 297 (1996), Università di Siena.

  2. Bezhanishvili G. (2001) ‘Glivenko Type Theorems for Intuitionistic Modal Logics’. Studia Logica 67, 98–109

    Article  Google Scholar 

  3. Birkhoff, G., Lattice Theory, 3rd edition. Colloq. Publ., vol. 25, Amer. Math. Soc., Providence, 1967.

  4. Blok, W., and D. Pigozzi, Algebraizable Logics, Memoirs of the American Mathematical Society 396, Providence, 1989.

  5. Blok W.J., Raftery J.G. (1997) ‘Varieties of commutative residuated integral pomonoids and their residuation subreducts’. J. Algebra, 190, 280–328

    Article  Google Scholar 

  6. Burris S., Sankappanavar H.P. (1981) A Course in Universal Algebra, Graduate Texts in Mathematics. Springer-Verlag, New York

  7. Cignoli R., Torrens A. (2002) ‘Free algebras in varieties of BL-algebras with a Boolean retract’. Algebra Universalis, 48, 55–79

    Article  Google Scholar 

  8. Cignoli R., Torrens A. (2003) ‘Hájek basic fuzzy logic and Łukasiewicz infinite–valued logic’. Arch. Math. Logic, 42, 361–370

    Article  Google Scholar 

  9. Cignoli R., Torrens A. (2004) ‘Glivenko like theorems in natural expansions of BCK-logics’. Math. Log. Quart. 50 2, 111–125

    Article  Google Scholar 

  10. Czelakowski J. (2003) Protoalgebraic logics. Kluwer Academic Pub., Dordrecht

    Google Scholar 

  11. Epstein R.L. (1995) Propositional Logics, Second Edition. Oxford University Press, New York

    Google Scholar 

  12. Font J.M., Jansana R. (2003) ‘A General Algebraic Semantics for Sentential Logics’. Kluwer Academic Pub., Dordrecht

    Google Scholar 

  13. Frink O. (1962) ‘Pseudo-complements in semi-lattices’. Duke Math. J. 29, 505–514

    Article  Google Scholar 

  14. Galatos N., Ono H. (2006) ‘Glivenko theorems for substructural logics over FL’. J. Symbolic Logic 71(4): 1353–1384

    Article  Google Scholar 

  15. Glivenko V. (1929) ‘Sur quelques points de la logique de M. Brouwer’. Bull. Acad. des Sci. de Belgique, 15, 183–188

    Google Scholar 

  16. Grätzer G. (1979). Universal Algebra, Second Edition. Springer-Verlag, New York

    Google Scholar 

  17. Grätzer G. (1998). General theory of lattices, Second Edition. Birkhäuser, Basel

    Google Scholar 

  18. Los J., Suszko R. (1958). ‘Remarks on sentential logic’. Indag. Math. 20, 177–183

    Article  Google Scholar 

  19. Troelstra, A., Lectures in Linear Logic, CSLI Lecture Notes, 1991

  20. Wójcicki, R., Theory of Logical Calculi, Basic theory of consequence operations, vol 100 of Synthese Library, Reidel, Dordrecht, 1988.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoni Torrens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torrens, A. An Approach to Glivenko’s Theorem in Algebraizable Logics. Stud Logica 88, 349–383 (2008). https://doi.org/10.1007/s11225-008-9109-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-008-9109-6

Keywords

Navigation