Skip to main content
Log in

Comparative Data Processing Approaches for Thermal Wave Imaging Techniques for Non-Destructive Testing

  • Original Paper
  • Published:
Sensing and Imaging: An International Journal Aims and scope Submit manuscript

Abstract

Thermal non destructive testing is a whole-field, non-contact and non-destructive inspection method used to reveal the surface or subsurface anomalies in a test sample. This paper describes a novel modelling and simulation technique of a three dimensional pulse compression method for non-stationary thermal imaging. This method requires much lower peak power heat sources than the widely used conventional pulsed thermographic methods (PT and PPT) and requires less time than sinusoidal modulated Lock-in Thermography (LT). In addition, simulation results obtained with the proposed techniques are compared with the conventional phase-based thermal imaging techniques (PPT and LT).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Maldague, X. (2001). Theory and practice of infrared thermography for nondestructive testing. Hoboken: John Wiley-Interscience.

    Google Scholar 

  2. Balageas, D. L., Deom, A. A., & Boscher, D. M. (1987). Characterization and nondestructive testing of carbon epoxy composites by a pulsed photo thermal method. Materials Evaluation, 45, 461–465.

    Google Scholar 

  3. Balageas, D. L., Krapez, J. C., & Cielo, P. (1986). Pulsed photothermal modeling of layered materials. Journal of Applied Physics, 59, 348–357.

    Article  Google Scholar 

  4. Shepard, S., Chaudhry, B., Predmesky, R., & Zaluzec, M. (1998). Pulsed thermographic inspection of spot welds. Proceedings of SPIE, 3361, 320–324.

    Article  Google Scholar 

  5. Tam, A. C., & Sullivan, B. (1983). Remote sensing applications of pulsed photothermal radiometry. Applied Physics Letters, 43, 333.

    Article  Google Scholar 

  6. Avdelidis, N. P., & Almond, D. P. (2004). Through skin sensing assessment of aircraft structures using pulsed thermography. Journal of NDT & E International, 37(5), 353–359.

    Article  Google Scholar 

  7. Shepard, S. M. (2001). Advances in pulsed thermography. Proceedings of SPIE, 4360, 511–515.

    Article  Google Scholar 

  8. Rosencwaig, A., & Gersho, A. (1976). Theory of the photoacoustic effect in solids. Journal of Applied Physics, 47, 64–69.

    Article  Google Scholar 

  9. Cowell, S. D., Burleigh, D. D., & Murray, T. J. (1989). Flash lamp heat flux requirements for thermographic inspection of fiber composite laminates. Proceedings of SPIE, 1094, 182–187.

    Google Scholar 

  10. Almond, D. P., & Lau, S. K. (1994). Defect sizing by transient thermography. I: An analytical treatment. Journal of Physics D: Applied Physics, 27, 1063–1069.

    Article  Google Scholar 

  11. Saintey, M. B., & Almond, D. P. (1995). Defect sizing by transient thermography. II: A numerical treatment. Journal of Physics D: Applied Physics, 28, 2539–2546.

    Article  Google Scholar 

  12. Avdelidis, N. P., Hawtin, B. C., & Almond, D. P. (2003). Transient thermography in the assessment of defects of aircrafts composites. NDT and E International, 36(6), 433–439.

    Article  Google Scholar 

  13. Ringermacher, H. I., Howard, D. R., & Filkins, R. J. (2004). Flash-quenching for high resolution thermal depth imaging. AIP Proceedings, 700(1), 477–481.

    Article  Google Scholar 

  14. Ringermacher, H. I., Howard, D. R., & Knight, B. (2006). Thermal imaging at general electric. AIP Proceedings, 820(1), 523–528.

    Article  Google Scholar 

  15. Busse, G., Wu, D., & Karpen, W. (1992). Thermal wave imaging with phase sensitive modulated thermography. Journal of Applied Physics, 71, 3962–3965.

    Article  Google Scholar 

  16. Vavilov, V., & Marinetti, S. (1999). Pulsed phase thermography and fourier-analysis thermal tomography. Russian Journal of Nondestructive Testing, 35(2), 134–145.

    Google Scholar 

  17. Busse, G., & Eyerer, P. (1983). Thermal wave remote and nondestructive inspection of polymers. Applied Physics Letters, 43, 355–357.

    Article  Google Scholar 

  18. Choi, M., Kang, K., Park, J., Kim, W., & Kim, K. (2008). Quantitative determination of a subsurface defect of reference specimen by lock-in infrared thermography. NDT and E International, 41(2), 119–124.

    Article  Google Scholar 

  19. Ibarra-Castanedo, C., Avdelidis, N. P., & Maldague, X. (2005). Qualitative and quantitative assessment of steel plates using pulsed phase thermography. Materials Evaluation, 63(11), 1128–1133.

    Google Scholar 

  20. Ibarra-Castanedo, C., González, D., Klein, M., Pilla, M., Vallerand, S., & Maldague, X. (2004). Infrared image processing and data analysis. Infrared Physics & Technology, 46, 75–83.

    Article  Google Scholar 

  21. Cielo, P., Maldague, X., Deom, A. A., & Lewak, R. (1987). Thermographic non destructive evaluation of industrial materials and structures. Materials Evaluation, 45, 452–460.

    Google Scholar 

  22. Mulaveesala, R., & Tuli, S. (2006). Theory of frequency modulated thermal wave imaging for non-destructive sub-surface defect detection. Applied Physics Letters, 89, 191913.

    Article  Google Scholar 

  23. Mulaveesala, R., Pal, P., & Tuli, S. (2006). Interface study of bonded wafers by digitized linear frequency modulated thermal wave imaging. Sensors and Actuators A, 128, 209–216.

    Article  Google Scholar 

  24. Mulaveesala, R., Vaddi, J. S., & Singh, P. (2008). Pulse compression approach to infrared nondestructive characterization. Review of Scientific Instruments, 79, 094901.

    Article  Google Scholar 

  25. Tuli, S., & Mulaveesala, R. (2005). Defect detection by pulse compression in frequency modulated thermal wave imaging. Journal of Quantitative Infrared Thermography, 2(1), 41–54.

    Article  Google Scholar 

  26. Mulaveesala, R., & Tuli, S. (2005). Implementation of frequency-modulated thermal wave imaging for non-destructive sub-surface defect detection. Insight, 47(4), 206–208.

    Article  Google Scholar 

  27. Mulaveesala, R., & Tuli, S. (2005). Digitized frequency modulated thermal wave imaging for non-destructive testing. Materials Evaluation, 63, 1046–1050.

    Google Scholar 

  28. Mulaveesala, R. (2006). Frequency modulated thermal wave imaging: theory, modeling, simulation and applications, Ph.D. Dissertation, Centre for Applied Research in Electronics, Indian Institute of Technology Delhi, New Delhi, India.

  29. Wehner, D. R. (1995). High resolution radar (2nd ed.). London: Artech House Inc.

  30. Ghali, V. S., Jonnalagadda, N., & Mulaveesala, R. (2009). Three dimensional pulse compression for infrared non-destructive testing. IEEE Sensor Journal, 9(7), 832–833.

    Article  Google Scholar 

  31. Grinzato, E., Vavilov, V., Bison, P. G., Marinetti, S., & Bressan, C. (1995). Methodology of processing experimental data in transient thermal NDT. Proceedings of SPIE, 2473, 167–178.

    Article  Google Scholar 

  32. MaIdague, X., Largoutit, Y., & Couturier, J. P. (1998). A study of defect depth using neural networks in pulsed phase thermography: modeling, noise, experiments. Revue Générale de Thermique, 37, 704–717.

    Article  Google Scholar 

  33. Petrovi, V. S., & Xydeas, C. S. (2003). Sensor noise effects on signal-level image fusion performance. Information Fusion, 4, 167–183.

    Article  Google Scholar 

  34. Omar, M. A., & Zhou, Y. (2008). A quantitative review of three flash thermography processing routines. Infrared Physics & Technology, 51(4), 300–306.

    Article  Google Scholar 

  35. Lee, D. J., Mitra, S., & Krile, T. F. (1989). Analysis of sequential complex images, using feature extraction and two-dimensional cepstrum techniques. Journal of the Optical Society of America A, 6, 863–870.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravibabu Mulaveesala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghali, V.S., Mulaveesala, R. Comparative Data Processing Approaches for Thermal Wave Imaging Techniques for Non-Destructive Testing. Sens Imaging 12, 15–33 (2011). https://doi.org/10.1007/s11220-011-0059-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11220-011-0059-0

Keywords

Navigation