Skip to main content
Log in

Emerging Parameter Space Map of Magnetic Reconnection in Collisional and Kinetic Regimes

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

In large-scale systems of interest to solar physics, there is growing evidence that magnetic reconnection involves the formation of extended current sheets which are unstable to plasmoids (secondary magnetic islands). Recent results suggest that plasmoids may play a critical role in the evolution of reconnection, and have raised fundamental questions regarding the applicability of resistive MHD to various regimes. In collisional plasmas, where the thickness of all resistive layers remain larger than the ion gyroradius, simulations results indicate that plasmoids permit reconnection to proceed much faster than the slow Sweet-Parker scaling. However, it appears these rates are still a factor of ∼10× slower than observed in kinetic regimes, where the diffusion region current sheet falls below the ion gyroradius and additional physics beyond MHD becomes crucially important. Over a broad range of interesting parameters, the formation of plasmoids may naturally induce a transition into these kinetic regimes. New insights into this scenario have emerged in recent years based on a combination of linear theory, fluid simulations and fully kinetic simulations which retain a Fokker-Planck collision operator to allow a rigorous treatment of Coulomb collisions as the reconnection electric field exceeds the runaway limit. Here, we present some new results from this approach for guide field reconnection. Based upon these results, a parameter space map is constructed that summarizes the present understanding of how reconnection proceeds in various regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A. Bhattacharjee, K. Germaschewski, C. Ng, Current singularities:drivers of impulsive reconnection. Phys. Plasmas 12, 042305 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  • A. Bhattacharjee, Y.M. Huang, H. Yang, B. Rogers, Fast reconnection in high-Lundquist-number plasmas due to secondary tearing instabilities. Phys. Plasmas 16, 112102 (2009)

    Article  ADS  Google Scholar 

  • J. Birn, J. Drake, M. Shay, B. Rogers, R. Denton, M. Hesse, M. Kuznetsova, Z. Ma, A. Bhattacharjee, A. Otto, P. Pritchett, Geospace environmental modeling (GEM) magnetic reconnection challenge. J. Geophys. Res. 106, 3715 (2001)

    Article  ADS  Google Scholar 

  • D. Biskamp, Magnetic reconnection via current sheets. Phys. Fluids 29, 1520 (1986)

    Article  ADS  MATH  Google Scholar 

  • K.J. Bowers, B.J. Albright, L. Yin, B. Bergen, T.J.T. Kwan, Ultrahigh performance three-dimensional electromagnetic relativistic kinetic plasma simulation. Phys. Plasmas 15, 055703 (2008)

    Article  ADS  Google Scholar 

  • K. Bowers, B. Albright, L. Yin, W. Daughton, V. Roytershteyn, B. Bergen, T. Kwan, Advances in petascale kinetic simulations with VPIC and Roadrunner. J. Phys. Conf. Ser. 180, 012055 (2009)

    Article  ADS  Google Scholar 

  • P.A. Cassak, J.F. Drake, The impact of microscopic magnetic reconnection on pre-flare energy storage. Astrophys. J. 707, 158 (2009)

    Article  ADS  Google Scholar 

  • P.A. Cassak, M. Shay, Magnetic reconnection for coronal conditions: Reconnection rates, secondary islands and onset. Space Sci. Rev. (2011). doi:10.1007/s11214-011-9755-2

    Google Scholar 

  • P.A. Cassak, M.A. Shay, J.F. Drake, Scaling of sweet–parker reconnection with secondary islands. Phys. Plasmas 16, 120702 (2009)

    Article  ADS  Google Scholar 

  • P. Cassak, M. Shay, J. Drake, Catastrophe model for fast magnetic reconnection onset. Phys. Rev. Lett. 95, 235002 (2005)

    Article  ADS  Google Scholar 

  • P. Chen, K. Shibata, D. Brooks, H. Isobe, A re-examination of the evidence for reconnection inflow. Astrophys. J. 602, 61–64 (2004)

    Article  ADS  Google Scholar 

  • W. Daughton, J. Scudder, H. Karimabadi, Fully kinetic simulations of undriven magnetic reconnection with open boundary conditions. Phys. Plasmas 13, 072101 (2006)

    Article  ADS  Google Scholar 

  • W. Daughton, V. Roytershteyn, B.J. Albright, H. Karimabadi, L. Yin, K.J. Bowers, Influence of coulomb collisions on the structure of reconnection layers. Phys. Plasmas 16, 072117 (2009a)

    Article  ADS  Google Scholar 

  • W. Daughton, V. Roytershteyn, B.J. Albright, H. Karimabadi, L. Yin, K.J. Bowers, Transition from collisional to kinetic regimes in large-scale reconnection layers. Phys. Rev. Lett. 103, 065004 (2009b)

    Article  ADS  Google Scholar 

  • W. Daughton, V. Roytershteyn, H. Karimabadi, L. Yin, B. Albright, B. Bergen, K. Bowers, Role of electron physics in the development of turbulent magnetic reconnection in collisionless plasmas. Nature Physics, (2011a, submitted)

  • W. Daughton, V. Roytershteyn, H. Karimabadi, L. Yin, B.J. Albright, S. Gary, K.J. Bowers, Secondary island formation in collisional and collisionless kinetic simulations of magnetic reconnection, in AIP Conference on Modern Challenges in Nonlinear Plasma Physics, vol. 1320, ed. by D. Vassiliadis (American Institute of Physics, College Park, 2011b), p. 144. doi:10.1063/1.3544319

    Google Scholar 

  • J. Egedal, W. Fox, N. Katz, M. Porkolab, K. Reim, E. Zhang, Laboratory observations of spontaneous magnetic reconnection. Phys. Rev. Lett. 98, 015003 (2006)

    Article  ADS  Google Scholar 

  • L. Fletcher, J. Pollock, H. Potts, Tracking of trace ultraviolet flare footpoints. Sol. Phys. 222, 279–298 (2004)

    Article  ADS  Google Scholar 

  • Z. Fu, L. Lee, Multiple x line reconnection. II. the dynamics. J. Geophys. Res. 91(A12), 13373–13383 (1986)

    Article  ADS  Google Scholar 

  • M. Georgoulis, D. Rust, P. Bernasconi, B. Schmieder, Statistics, morphology, and energetics of Ellerman bombs. Astrophys. J. 575, 506 (2002)

    Article  ADS  Google Scholar 

  • M. Hesse, J. Birn, M. Kuznetsova, Collisionless magnetic reconnection: Electron processes and transport modeling. J. Geophys. Res. 106, 3721 (2001)

    Article  ADS  Google Scholar 

  • Y.M. Huang, A. Bhattacharjee, Scaling laws of resistive magnetohydrodynamic reconnection in the high-Lundquist-number, plasmoid-unstable regime. Phys. Plasmas 17, 062104 (2010)

    Article  ADS  Google Scholar 

  • D. Innes, B. Inhester, W. Axford, K. Wilhelm, Bi-directional plasma jets produced by magnetic reconnection on the sun. Nature 386, 811–813 (1997)

    Article  ADS  Google Scholar 

  • H. Isobe, K. Shibata, Reconnection in solar flares: Outstanding questions. Astron. Astrophys. 30, 79–85 (2009)

    Article  Google Scholar 

  • H. Karimabadi, W. Daughton, J. Scudder, Multi-scale structure of the electron the electron diffusion region. Geophys. Res. Lett. 34, 13104 (2007)

    Article  ADS  Google Scholar 

  • M. Karlicky, M. Barta, H. Meszarosova, P. Zlobec, Time scales of the slowly drifting pulsating structure observed during the April 12, 2001 flare. Astron. Astrophys. 432, 705 (2005)

    Article  ADS  Google Scholar 

  • B. Kliem, M. Karlicky, A. Benz, Solar flare radio pulsations as a signature of dynamic magnetic reconnection. Astron. Astrophys. 360, 715 (2000)

    ADS  Google Scholar 

  • A. Klimas, M. Hesse, S. Zenitani, Particle-in-cell simulations of collisionless reconnection with open outflow boundaries. Phys. Plasmas 15, 082102 (2008)

    Article  ADS  Google Scholar 

  • G. Lapenta, Self-feeding turbulent reconnection on macroscopic scales. Phys. Rev. Lett. 100, 235001 (2008)

    Article  ADS  Google Scholar 

  • J. Lin, Y.K. Ko, L. Sui, J. Raymond, G. Stenborg, Y. Jiang, S. Zhao, S. Mancuso, Direct observations of the magnetic reconnection site of an eruption on 2003 November 18. Astrophys. J. 622, 1251–1264 (2005)

    Article  ADS  Google Scholar 

  • Y. Litvinenko, S. Martin, Magnetic reconnection as the cause of a photospheric canceling feature and mass flows in a filament. Sol. Phys. 190, 45–58 (1999)

    Article  ADS  Google Scholar 

  • N.F. Loureiro, A.A. Schekochihin, S.C. Cowley, Instability of current sheets and formation of plasmoid chains. Phys. Plasmas 14(10), 100703 (2007)

    Article  ADS  Google Scholar 

  • Z. Ma, A. Bhattacharjee, Fast impulsive reconnection and current sheet intensification due to electron pressure gradients in semi-collisional plasmas. Geophys. Res. Lett. 23, 1673 (1996)

    Article  ADS  Google Scholar 

  • F. Malara, P. Veltri, V. Carbone, Competition among nonlinear effects in tearing instability saturation. Phys. Fluids B 4, 3070 (1992)

    Article  ADS  Google Scholar 

  • P. Martens, Yohkoh-SXT observations of reconnection. Adv. Space Res. 32, 905–916 (2003)

    Article  ADS  Google Scholar 

  • S. Masuda, T. Kosugi, H. Hara, Y. Ogawara, A loop top hard X-ray source in a compact solar-flare as evidence for magnetic reconnection. Nature 371, 495 (1994)

    Article  ADS  Google Scholar 

  • W. Matthaeus, S. Lamkin, Rapid reconnection caused by finite amplitude fluctuations. Phys. Fluids 28, 303 (1985)

    Article  ADS  Google Scholar 

  • N. Narukage, K. Shibata, Statistical analysis of reconnection inflows in solar flares observed with SOHO EIT. Astrophys. J. 637, 1122–1134 (2006)

    Article  ADS  Google Scholar 

  • L. Ni, K. Germaschewski, Y.M. Huang, B.P. Sullivan, H. Yang, A. Bhattacharjee, Linear plasmoid instability of thin current sheets with shear flow. Phys. Plasmas 17, 052109 (2010)

    Article  ADS  Google Scholar 

  • E.N. Parker, Sweet’s mechanism for merging magnetic fields in conducting fluids. J. Geophys. Res. 62, 509 (1957)

    Article  ADS  Google Scholar 

  • H. Petschek, Magnetic field annihilation, in AAS-NASA Symposium on the Physics of Solar Flares, ed. by W. Hess (NASA, Washington, 1964), pp. 425–439. NASA SP-50

    Google Scholar 

  • P. Pritchett, Geospace environmental modeling magnetic reconnection challenge: Simulations with a full particle electromagnetic code. J. Geophys. Res. 106, 3783 (2001)

    Article  ADS  Google Scholar 

  • V. Roytershteyn, W. Daughton, L. Yin, B. Albright, K. Bowers, S. Dorfman, Y. Ren, H. Ji, M. Yamada, H. Karimabadi, Driven magnetic reconnection near the Dreicer limit. Phys. Plasmas 17, 055706 (2010)

    Article  ADS  Google Scholar 

  • R. Samtaney, N.F. Loureiro, D.A. Uzdensky, A. Schekochihin, S.C. Cowley, Formation of plasmoid chains in magnetic reconnection. Phys. Rev. Lett. 103, 105004 (2009)

    Article  ADS  Google Scholar 

  • M. Shay, J. Drake, B. Rogers, R. Denton, Alfvénic collisionless magnetic reconnection and the Hall term. J. Geophys. Res. 106, 3759 (2001)

    Article  ADS  Google Scholar 

  • M. Shay, J. Drake, M. Swisdak, Two-scale structure of the electron dissipation region during collisionless magnetic reconnection. Phys. Rev. Lett. 99, 155002 (2007)

    Article  ADS  Google Scholar 

  • L.S. Shepherd, P.A. Cassak, Comparison of secondary islands in collisional reconnection to hall reconnection. Phys. Rev. Lett. 105, 015004 (2010)

    Article  ADS  Google Scholar 

  • K. Shibata, Evidence of magnetic reconnection in solar flares and a unified model of flares. Astrophys. Space Sci. 264, 129–144 (1999)

    Article  ADS  MATH  Google Scholar 

  • K. Shibata, S. Tanuma, Plasmoid-induced-reconnection and fractal reconnection. Earth Planets Space 53, 473 (2001)

    Article  ADS  Google Scholar 

  • K. Shibata, S. Masuda, M. Shimojo, H. Hara, T. Yokoyama, S. Tsuneta, T. Kosugi, Y. Ogawara, Hot-plasma ejections associated with compact-loop solar flares. Astrophys. J. Lett. 451, 83–85 (1995)

    Article  ADS  Google Scholar 

  • K. Shibata, T. Nakamura, T. Matsumoto, K. Otsuji, T. Okamoto, N. Nishizuka, T. Kawate, H. Watanabe, S. Nagata, S. UeNo, R. Kitai, S. Nozawa, S. Tsuneta, Y. Suematsu, K. Ichimoto, T. Shimizu, Y. Katsukawa, T. Tarbell, T. Berger, B. Lites, R. Shine, A. Title, Chromospheric anemone jets as evidence of ubiquitous reconnection. Science 318, 1591–1594 (2007)

    Article  ADS  Google Scholar 

  • A.N. Simakov, L. Chacón, Quantitative, comprehensive, analytical model for magnetic reconnection in hall magnetohydrodynamics. Phys. Rev. Lett. 101, 105003 (2008)

    Article  ADS  Google Scholar 

  • T. Takizuka, H. Abe, A binary collision model for plasma simulation with a particle code. J. Comput. Phys. 25, 205 (1977)

    Article  ADS  MATH  Google Scholar 

  • S. Tsuneta, H. Hara, T. Shimizu, L. Acton, K. Strong, H. Hudson, Y. Ogawara, Observation of a solar-flare at the limb with the Yohkoh soft-X-ray telescope. Publ. Astron. Soc. Jpn. 44, 63–69 (1992)

    ADS  Google Scholar 

  • M. Ugai, T. Tsuda, Magnetic field-line reconnection by localized enhancement of resistivity. J. Plasma Phys. 17, 337 (1977)

    Article  ADS  Google Scholar 

  • D. Uzdensky, The fast collisionless reconnection condition and the self-organization of solar coronal heating. Astrophys. J. 671, 2139 (2007)

    Article  ADS  Google Scholar 

  • D. Uzdensky, R. Kulsrud, Two-dimensional numerical simulations of the resistive layer. Phys. Plasmas 7, 4018 (2000)

    Article  ADS  Google Scholar 

  • D.A. Uzdensky, N.F. Loureiro, A. Schekochihin, Fast magnetic reconnection in the plasmoid-dominated regime. Phys. Rev. Lett. 105, 235002 (2010)

    Article  ADS  Google Scholar 

  • W. Wan, G. Lapenta, Electron self-reinforcing process of magnetic reconnection. Phys. Rev. Lett. 101, 015001 (2008)

    Article  ADS  Google Scholar 

  • M. Yamada, Y. Ren, H. Ji, J. Breslau, S. Gerhardt, R. Kulsrud, A. Kuritsyn, Experimental study of two-fluid effects on magnetic reconnection in a laboratory plasma with variable collisionality. Phys. Plasmas 13(5), 052119 (2006). doi:10.1063/1.2203950

    Article  ADS  Google Scholar 

  • M. Yan, L. Lee, E. Priest, Fast magnetic reconnection with small shock angles. J. Geophys. Res. 97, 8277 (1992)

    Article  ADS  Google Scholar 

  • T. Yokoyama, K. Akita, T. Morimoto, K. Inoue, J. Newmark, Clear evidence of reconnection inflow of a solar flare. Astrophys. J. Lett. 546, 69–72 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Daughton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daughton, W., Roytershteyn, V. Emerging Parameter Space Map of Magnetic Reconnection in Collisional and Kinetic Regimes. Space Sci Rev 172, 271–282 (2012). https://doi.org/10.1007/s11214-011-9766-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-011-9766-z

Keywords

Navigation