Skip to main content
Log in

Magnetic Reconnection in Extreme Astrophysical Environments

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Magnetic reconnection is a fundamental plasma physics process in which ideal-MHD’s frozen-in constraints are broken and the magnetic field topology is dramatically re-arranged, which often leads to a violent release of the free magnetic energy. Most of the magnetic reconnection research done to date has been motivated by the applications to systems such as the solar corona, Earth’s magnetosphere, and magnetic confinement devices for thermonuclear fusion. These environments have relatively low energy densities and the plasma is adequately described as a mixture of equal numbers of electrons and ions and where the dissipated magnetic energy always stays with the plasma. In contrast, in this paper I would like to introduce a different, new direction of research—reconnection in high energy density radiative plasmas, in which photons play as important a role as electrons and ions; in particular, in which radiation pressure and radiative cooling become dominant factors in the pressure and energy balance. This research is motivated in part by rapid theoretical and experimental advances in High Energy Density Physics, and in part by several important problems in modern high-energy astrophysics. I first discuss some astrophysical examples of high-energy-density reconnection and then identify the key physical processes that distinguish them from traditional reconnection. Among the most important of these processes are: special-relativistic effects; radiative effects (radiative cooling, radiation pressure, and radiative resistivity); and, at the most extreme end—QED effects, including pair creation. The most notable among the astrophysical applications are situations involving magnetar-strength fields (1014–1015 G, exceeding the quantum critical field B ≃4×1013 G). The most important examples are giant flares in soft gamma repeaters (SGRs) and magnetic models of the central engines and relativistic jets of Gamma Ray Bursts (GRBs). The magnetic energy density in these environments is so high that, when it is suddenly released, the plasma is heated to ultra-relativistic temperatures. As a result, electron-positron pairs are created in copious quantities, dressing the reconnection layer in an optically thick pair coat, thereby trapping the photons. The plasma pressure inside the layer is then dominated by the combined radiation and pair pressure. At the same time, the timescale for radiation diffusion across the layer may, under some conditions, still be shorter than the global (along the layer) Alfvén transit time, and hence radiative cooling starts to dominate the thermodynamics of the problem. The reconnection problem then becomes essentially a radiative transfer problem. In addition, the high pair density makes the reconnection layer highly collisional, independent of the upstream plasma density, and hence radiative resistive MHD applies. The presence of all these processes calls for a substantial revision of our traditional physical picture of reconnection when applied to these environments and thus opens a new frontier in reconnection research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J.J. Aly, J. Kuijpers, Flaring interactions between accretion disk and neutron star magnetosphere. Astron. Astrophys. 227, 473–482 (1990)

    ADS  Google Scholar 

  • J. Arons, Pulsars: Progress, Problems and Prospects (2007)

  • N. Bessho, A. Bhattacharjee, Collisionless reconnection in an electron-positron plasma. Phys. Rev. Lett. 95(24), 245001 (2005). doi:10.1103/PhysRevLett.95.245001

    ADS  Google Scholar 

  • N. Bessho, A. Bhattacharjee, Fast collisionless reconnection in electron-positron plasmas. Phys. Plasmas 14(5), 056503 (2007). doi:10.1063/1.2714020

    ADS  Google Scholar 

  • A. Bhattacharjee, Y. Huang, H. Yang, B. Rogers, Fast reconnection in high-Lundquist-number plasmas due to the plasmoid instability. Phys. Plasmas 16(11), 112102 (2009). doi:10.1063/1.3264103

    ADS  Google Scholar 

  • J. Birn, J.F. Drake, M.A. Shay, B.N. Rogers, R.E. Denton, M. Hesse, M. Kuznetsova, Z.W. Ma, A. Bhattacharjee, A. Otto, P.L. Pritchett, Geospace Environmental Modeling (GEM) magnetic reconnection challenge. J. Geophys. Res. 106, 3715–3720 (2001). doi:10.1029/1999JA900449

    ADS  Google Scholar 

  • D. Biskamp, E. Schwarz, J.F. Drake, Two-fluid theory of collisionless magnetic reconnection. Phys. Plasmas 4, 1002–1009 (1997). doi:10.1063/1.872211

    MathSciNet  ADS  Google Scholar 

  • E.G. Blackman, G.B. Field, Kinematics of relativistic magnetic reconnection. Phys. Rev. Lett. 72, 494–497 (1994). doi:10.1103/PhysRevLett.72.494

    ADS  Google Scholar 

  • A. Brandenburg, E.G. Zweibel, Effects of pressure and resistivity on the ambipolar diffusion singularity: too little, too late. Astrophys. J. 448, 734 (1995). doi:10.1086/176001

    ADS  Google Scholar 

  • A. Burrows, L. Dessart, E. Livne, C.D. Ott, J. Murphy, Simulations of magnetically driven supernova and hypernova explosions in the context of rapid rotation. Astrophys. J. 664, 416–434 (2007). doi:10.1086/519161

    ADS  Google Scholar 

  • P.A. Cassak, J.F. Drake, M.A. Shay, A model for spontaneous onset of fast magnetic reconnection. Astrophys. J. Lett. 644, 145–148 (2006). doi:10.1086/505690

    ADS  Google Scholar 

  • P.A. Cassak, J.F. Drake, M.A. Shay, Catastrophic onset of fast magnetic reconnection with a guide field. Phys. Plasmas 14(5), 054502 (2007). doi:10.1063/1.2734948

    ADS  Google Scholar 

  • P.A. Cassak, D.J. Mullan, M.A. Shay, From solar and stellar flares to coronal heating: theory and observations of how magnetic reconnection regulates coronal conditions. Astrophys. J. Lett. 676, 69–72 (2008). doi:10.1086/587055

    ADS  Google Scholar 

  • P.A. Cassak, M.A. Shay, J.F. Drake, Catastrophe model for fast magnetic reconnection onset. Phys. Rev. Lett. 95(23), 235002 (2005). doi:10.1103/PhysRevLett.95.235002

    ADS  Google Scholar 

  • P.A. Cassak, M.A. Shay, J.F. Drake, Scaling of Sweet-Parker reconnection with secondary islands. Phys. Plasmas 16(12), 120702 (2009). doi:10.1063/1.3274462

    ADS  Google Scholar 

  • A.R. Choudhuri, Astrophysics for Physicists (Cambridge University Press, Cambridge, 2010), p. 329

    Google Scholar 

  • I. Contopoulos, The role of reconnection in the pulsar magnetosphere. Astron. Astrophys. 466, 301–307 (2007). doi:10.1051/0004-6361:20065973

    ADS  MATH  Google Scholar 

  • F.V. Coroniti, Magnetically striped relativistic magnetohydrodynamic winds - The Crab Nebula revisited. Astrophys. J. 349, 538–545 (1990). doi:10.1086/168340

    ADS  Google Scholar 

  • C.R. D’Angelo, H.C. Spruit, Episodic accretion on to strongly magnetic stars. Mon. Not. R. Astron. Soc. 406, 1208–1219 (2010). doi:10.1111/j.1365-2966.2010.16749.x

    ADS  Google Scholar 

  • W. Daughton, V. Roytershteyn, B.J. Albright, H. Karimabadi, L. Yin, K.J. Bowers, Transition from collisional to kinetic regimes in large-scale reconnection layers. Phys. Rev. Lett. 103(6), 065004 (2009). doi:10.1103/PhysRevLett.103.065004

    ADS  Google Scholar 

  • T. Di Matteo, A. Celotti, A.C. Fabian, Magnetic flares in accretion disc coronae and the spectral states of black hole candidates: the case of GX339-4. Mon. Not. R. Astron. Soc. 304, 809–820 (1999). doi:10.1046/j.1365-8711.1999.02375.x

    ADS  Google Scholar 

  • V.L. Dorman, R.M. Kulsrud, One-dimensional merging of magnetic fields with cooling. Astrophys. J. 449, 777 (1995). doi:10.1086/176097

    ADS  Google Scholar 

  • R.P. Drake, High-Energy-Density Physics: Fundamentals, Inertial Fusion, and Experimental Astrophysics (Springer, Berlin, 2006)

    Google Scholar 

  • G. Drenkhahn, H.C. Spruit, Efficient acceleration and radiation in Poynting flux powered GRB outflows. Astron. Astrophys. 391, 1141–1153 (2002). doi:10.1051/0004-6361:20020839

    ADS  Google Scholar 

  • B.D. Farris, T.K. Li, Y.T. Liu, S.L. Shapiro, Relativistic radiation magnetohydrodynamics in dynamical spacetimes: Numerical methods and tests. Phys. Rev. D 78(2), 024023 (2008). doi:10.1103/PhysRevD.78.024023

    ADS  Google Scholar 

  • E.D. Feigelson, T. Montmerle, High-energy processes in young stellar objects. Annu. Rev. Astron. Astrophys. 37, 363–408 (1999). doi:10.1146/annurev.astro.37.1.363

    ADS  Google Scholar 

  • A.A. Galeev, R. Rosner, G.S. Vaiana, Structured coronae of accretion disks. Astrophys. J. 229, 318–326 (1979). doi:10.1086/156957

    ADS  Google Scholar 

  • D. Giannios, H.C. Spruit, Spectra of Poynting-flux powered GRB outflows. Astron. Astrophys. 430, 1–7 (2005). doi:10.1051/0004-6361:20047033

    ADS  Google Scholar 

  • D. Giannios, H.C. Spruit, The role of kink instability in Poynting-flux dominated jets. Astron. Astrophys. 450, 887–898 (2006). doi:10.1051/0004-6361:20054107

    ADS  MATH  Google Scholar 

  • D. Giannios, H.C. Spruit, Spectral and timing properties of a dissipative γ-ray burst photosphere. Astron. Astrophys. 469, 1–9 (2007). doi:10.1051/0004-6361:20066739

    ADS  Google Scholar 

  • D. Giannios, D.A. Uzdensky, M.C. Begelman, Fast TeV variability in blazars: jets in a jet. Mon. Not. R. Astron. Soc. 395, 29–33 (2009). doi:10.1111/j.1745-3933.2009.00635.x

    ADS  Google Scholar 

  • D. Giannios, D.A. Uzdensky, M.C. Begelman, Fast TeV variability from misaligned minijets in the jet of M87. Mon. Not. R. Astron. Soc. 402, 1649–1656 (2010). doi:10.1111/j.1365-2966.2009.16045.x

    ADS  Google Scholar 

  • J. Goodman, D. Uzdensky, Reconnection in marginally collisionless accretion disk coronae. Astrophys. J. 688, 555–558 (2008). doi:10.1086/592345

    ADS  Google Scholar 

  • A.P. Goodson, R.M. Winglee, K. Boehm, Time-dependent accretion by magnetic young stellar objects as a launching mechanism for stellar jets. Astrophys. J. 489, 199 (1997). doi:10.1086/304774

    ADS  Google Scholar 

  • F. Haardt, L. Maraschi, A two-phase model for the X-ray emission from Seyfert galaxies. Astrophys. J. Lett. 380, 51–54 (1991). doi:10.1086/186171

    ADS  Google Scholar 

  • A.K. Harding, D. Lai, Physics of strongly magnetized neutron stars. Rep. Prog. Phys. 69, 2631–2708 (2006). doi:10.1088/0034-4885/69/9/R03

    ADS  Google Scholar 

  • M.R. Hayashi, K. Shibata, R. Matsumoto, X-ray flares and mass outflows driven by magnetic interaction between a protostar and its surrounding disk. Astrophys. J. Lett. 468, 37 (1996). doi:10.1086/310222

    ADS  Google Scholar 

  • F. Heitsch, E.G. Zweibel, Fast reconnection in a two-stage process. Astrophys. J. 583, 229–244 (2003). doi:10.1086/345082

    ADS  Google Scholar 

  • H. Herold, Compton and Thomson scattering in strong magnetic fields. Phys. Rev. D 19, 2868–2875 (1979). doi:10.1103/PhysRevD.19.2868

    ADS  Google Scholar 

  • M. Hesse, S. Zenitani, Dissipation in relativistic pair-plasma reconnection. Phys. Plasmas 14(11), 112102 (2007). doi:10.1063/1.2801482

    ADS  Google Scholar 

  • Y. Huang, A. Bhattacharjee, Scaling laws of resistive magnetohydrodynamic reconnection in the high-Lundquist-number, plasmoid-unstable regime. Phys. Plasmas 17(6), 062104 (2010). doi:10.1063/1.3420208

    ADS  Google Scholar 

  • C.H. Jaroschek, M. Hoshino, Radiation-dominated relativistic current sheets. Phys. Rev. Lett. 103(7), 075002 (2009). doi:10.1103/PhysRevLett.103.075002

    ADS  Google Scholar 

  • C.H. Jaroschek, H. Lesch, R.A. Treumann, Relativistic kinetic reconnection as the possible source mechanism for high variability and flat spectra in extragalactic radio sources. Astrophys. J. Lett. 605, 9–12 (2004a). doi:10.1086/420767

    ADS  Google Scholar 

  • C.H. Jaroschek, R.A. Treumann, H. Lesch, M. Scholer, Fast reconnection in relativistic pair plasmas: Analysis of particle acceleration in self-consistent full particle simulations. Phys. Plasmas 11, 1151–1163 (2004b). doi:10.1063/1.1644814

    ADS  Google Scholar 

  • J.G. Kirk, O. Skjæraasen, Dissipation in poynting-flux-dominated flows: the σ-problem of the Crab pulsar wind. Astrophys. J. 591, 366–379 (2003). doi:10.1086/375215

    ADS  Google Scholar 

  • R.G. Kleva, J.F. Drake, F.L. Waelbroeck, Fast reconnection in high temperature plasmas. Phys. Plasmas 2, 23–34 (1995). doi:10.1063/1.871095

    ADS  Google Scholar 

  • S.S. Komissarov, Multidimensional numerical scheme for resistive relativistic magnetohydrodynamics. Mon. Not. R. Astron. Soc. 382, 995–1004 (2007). doi:10.1111/j.1365-2966.2007.12448.x

    ADS  Google Scholar 

  • S.S. Komissarov, M.V. Barkov, Magnetar-energized supernova explosions and gamma-ray burst jets. Mon. Not. R. Astron. Soc. 382, 1029–1040 (2007). doi:10.1111/j.1365-2966.2007.12485.x

    ADS  Google Scholar 

  • D.A. Larrabee, R.V.E. Lovelace, M.M. Romanova, Lepton acceleration by relativistic collisionless magnetic reconnection. Astrophys. J. 586, 72–78 (2003). doi:10.1086/367640

    ADS  Google Scholar 

  • A. Lazarian, E.T. Vishniac, Reconnection in a weakly stochastic field. Astrophys. J. 517, 700–718 (1999). doi:10.1086/307233

    ADS  Google Scholar 

  • H.K. Lee, R.A.M.J. Wijers, G.E. Brown, The Blandford-Znajek process as a central engine for a gamma-ray burst. Phys. Rep. 325, 83–114 (2000). doi:10.1016/S0370-1573(99)00084-8

    ADS  Google Scholar 

  • H. Lesch, W. Reich, The origin of monoenergetic electrons in the Arc of the Galactic Center - Particle acceleration by magnetic reconnection. Astron. Astrophys. 264, 493–499 (1992)

    ADS  Google Scholar 

  • C.K. Li, F.H. Séguin, J.A. Frenje, J.R. Rygg, R.D. Petrasso, R.P.J. Town, O.L. Landen, J.P. Knauer, V.A. Smalyuk, Observation of megagauss-field topology changes due to magnetic reconnection in laser-produced plasmas. Phys. Rev. Lett. 99(5), 055001 (2007). doi:10.1103/PhysRevLett.99.055001

    ADS  Google Scholar 

  • B.F. Liu, S. Mineshige, K. Ohsuga, Spectra from a magnetic reconnection-heated corona in active galactic nuclei. Astrophys. J. 587, 571–579 (2003). doi:10.1086/368282

    ADS  Google Scholar 

  • W. Liu, H. Li, L. Yin, W. Daughton, B.J. Albright, K.J. Bowers, E.P. Liang, Particle Energization in 3D Magnetic Reconnection of Relativistic Pair Plasmas (2010)

    Google Scholar 

  • N.F. Loureiro, A.A. Schekochihin, S.C. Cowley, Instability of current sheets and formation of plasmoid chains. Phys. Plasmas 14(10), 100703 (2007). doi:10.1063/1.2783986

    ADS  Google Scholar 

  • D. Lynden-Bell, Magnetic collimation by accretion discs of quasars and stars. Mon. Not. R. Astron. Soc. 279, 389–401 (1996)

    ADS  Google Scholar 

  • Y.E. Lyubarskii, A model for the energetic emission from pulsars. Astron. Astrophys. 311, 172–178 (1996)

    ADS  Google Scholar 

  • Y. Lyubarsky, J.G. Kirk, Reconnection in a striped pulsar wind. Astrophys. J. 547, 437–448 (2001). doi:10.1086/318354

    ADS  Google Scholar 

  • Y.E. Lyubarsky, The termination shock in a striped pulsar wind. Mon. Not. R. Astron. Soc. 345, 153–160 (2003). doi:10.1046/j.1365-8711.2003.06927.x

    ADS  Google Scholar 

  • Y.E. Lyubarsky, On the relativistic magnetic reconnection. Mon. Not. R. Astron. Soc. 358, 113–119 (2005). doi:10.1111/j.1365-2966.2005.08767.x

    ADS  Google Scholar 

  • M. Lyutikov, Explosive reconnection in magnetars. Mon. Not. R. Astron. Soc. 346, 540–554 (2003a). doi:10.1046/j.1365-2966.2003.07110.x

    ADS  Google Scholar 

  • M. Lyutikov, Role of reconnection in AGN jets. New Astron. Rev. 47, 513–515 (2003b). doi:10.1016/S1387-6473(03)00083-6

    ADS  Google Scholar 

  • M. Lyutikov, Magnetar giant flares and afterglows as relativistic magnetized explosions. Mon. Not. R. Astron. Soc. 367, 1594–1602 (2006a). doi:10.1111/j.1365-2966.2006.10069.x

    ADS  Google Scholar 

  • M. Lyutikov, The electromagnetic model of gamma-ray bursts. New J. Phys. 8, 119 (2006b). doi:10.1088/1367-2630/8/7/119

    ADS  Google Scholar 

  • M. Lyutikov, A high-sigma model of pulsar wind nebulae. Mon. Not. R. Astron. Soc. 405, 1809–1815 (2010). doi:10.1111/j.1365-2966.2010.16553.x

    ADS  Google Scholar 

  • M. Lyutikov, E.G. Blackman, Gamma-ray bursts from unstable Poynting-dominated outflows. Mon. Not. R. Astron. Soc. 321, 177–186 (2001). doi:10.1046/j.1365-8711.2001.04190.x

    ADS  Google Scholar 

  • M. Lyutikov, R. Blandford, Dynamics of Relativistic Magnetic Explosions in Gamma Ray Bursters. APS Meeting Abstracts (2002)

  • M. Lyutikov, R. Blandford, Gamma Ray Bursts as Electromagnetic Outflows (2003)

    Google Scholar 

  • M. Lyutikov, D. Uzdensky, Dynamics of relativistic reconnection. Astrophys. J. 589, 893–901 (2003). doi:10.1086/374808

    ADS  Google Scholar 

  • Z.W. Ma, A. Bhattacharjee, Fast impulsive reconnection and current sheet intensification due to electron pressure gradients in semi-collisional plasmas. Geophys. Res. Lett. 23, 1673–1676 (1996). doi:10.1029/96GL01600

    ADS  Google Scholar 

  • A.I. MacFadyen, S.E. Woosley, Collapsars: gamma-ray bursts and explosions in “failed supernovae”. Astrophys. J. 524, 262–289 (1999). doi:10.1086/307790

    ADS  Google Scholar 

  • Y. Masada, S. Nagataki, K. Shibata, T. Terasawa, Solar-type magnetic reconnection model for magnetar giant flares. Publ. Astron. Soc. Jpn. 62, 1093 (2010)

    ADS  Google Scholar 

  • E.P. Mazets, T.L. Cline, R.L. Aptekar’, P.S. Butterworth, D.D. Frederiks, S.V. Golenetskii, V.N. Il’Inskii, V.D. Pal’Shin, Activity of the soft gamma repeater SGR 1900 + 14 in 1998 from Konus-Wind observations: 2. The giant August 27 outburst. Astron. Lett. 25, 635–648 (1999)

    ADS  Google Scholar 

  • J.C. McKinney, D.A. Uzdensky, A reconnection switch to trigger gamma-ray burst jet dissipation. Mon. Not. R. Astron. Soc. (2010, submitted). arXiv:1011.1904 [astro-ph]

  • M.V. Medvedev, Thermodynamics of photons in relativistic e + e γ plasmas. Phys. Rev. E 59, 4766 (1999). doi:10.1103/PhysRevE.59.R4766

    ADS  Google Scholar 

  • P. Meszaros, M.J. Rees, Optical and long-wavelength afterglow from gamma-ray bursts. Astrophys. J. 476, 232 (1997). doi:10.1086/303625

    ADS  Google Scholar 

  • F.C. Michel, Magnetic structure of pulsar winds. Astrophys. J. 431, 397–401 (1994). doi:10.1086/174493

    ADS  Google Scholar 

  • F.S. Mozer, S.D. Bale, T.D. Phan, Evidence of diffusion regions at a subsolar magnetopause crossing. Phys. Rev. Lett. 89(1), 015002 (2002). doi:10.1103/PhysRevLett.89.015002

    ADS  Google Scholar 

  • K. Nalewajko, M. Begelman, D. Giannios, D. Uzdensky, M. Sikora, Radiative properties of reconnection-powered minijets in blazars. Mon. Not. R. Astron. Soc. (2010, accepted). arXiv:1007.3994 [astro-ph]

  • P.M. Nilson, L. Willingale, M.C. Kaluza, C. Kamperidis, S. Minardi, M.S. Wei, P. Fernandes, M. Notley, S. Bandyopadhyay, M. Sherlock, R.J. Kingham, M. Tatarakis, Z. Najmudin, W. Rozmus, R.G. Evans, M.G. Haines, A.E. Dangor, K. Krushelnick, Magnetic reconnection and plasma dynamics in two-beam laser-solid interactions. Phys. Rev. Lett. 97(25), 255001 (2006). doi:10.1103/PhysRevLett.97.255001

    ADS  Google Scholar 

  • M. Øieroset, T.D. Phan, M. Fujimoto, R.P. Lin, R.P. Lepping, In situ detection of collisionless reconnection in the Earth’s magnetotail. Nature 412, 414–417 (2001). doi:10.1038/35086520

    ADS  Google Scholar 

  • B. Paczynski, Are gamma-ray bursts in star-forming regions? Astrophys. J. Lett. 494, 45 (1998). doi:10.1086/311148

    ADS  Google Scholar 

  • T. Padmanabhan, Theoretical Astrophysics, vol. 1 (Cambridge University Press, Cambridge, 2000), pp. 239–240

    MATH  Google Scholar 

  • D.M. Palmer, S. Barthelmy, N. Gehrels, R.M. Kippen, T. Cayton, C. Kouveliotou, D. Eichler, R.A.M.J. Wijers, P.M. Woods, J. Granot, Y.E. Lyubarsky, E. Ramirez-Ruiz, L. Barbier, M. Chester, J. Cummings, E.E. Fenimore, M.H. Finger, B.M. Gaensler, D. Hullinger, H. Krimm, C.B. Markwardt, J.A. Nousek, A. Parsons, S. Patel, T. Sakamoto, G. Sato, M. Suzuki, J. Tueller, A giant γ-ray flare from the magnetar SGR 1806 - 20. Nature 434, 1107–1109 (2005). doi:10.1038/nature03525

    ADS  Google Scholar 

  • E.N. Parker, Sweet’s mechanism for merging magnetic fields in conducting fluids. J. Geophys. Res. 62, 509–520 (1957)

    ADS  Google Scholar 

  • E.N. Parker, The solar-flare phenomenon and the theory of reconnection and annihilation of magnetic fields. Astrophys. J. Suppl. Ser. 8, 177 (1963). doi:10.1086/190087

    ADS  Google Scholar 

  • J. Pétri, Y. Lyubarsky, Magnetic reconnection at the termination shock in a striped pulsar wind. Astron. Astrophys. 473, 683–700 (2007). doi:10.1051/0004-6361:20066981

    ADS  MATH  Google Scholar 

  • H.E. Petschek, Magnetic field annihilation, in The Physics of Solar Flares, ed. by W.N. Hess (1964), p. 425

    Google Scholar 

  • T.D. Phan, J.T. Gosling, M.S. Davis, R.M. Skoug, M. Øieroset, R.P. Lin, R.P. Lepping, D.J. McComas, C.W. Smith, H. Reme, A. Balogh, A magnetic reconnection X-line extending more than 390 Earth radii in the solar wind. Nature 439, 175–178 (2006). doi:10.1038/nature04393

    ADS  Google Scholar 

  • D. Proga, A.I. MacFadyen, P.J. Armitage, M.C. Begelman, Axisymmetric magnetohydrodynamic simulations of the collapsar model for gamma-ray bursts. Astrophys. J. Lett. 599, 5–8 (2003). doi:10.1086/381158

    ADS  Google Scholar 

  • M.J. Rees, P. Mészáros, Dissipative photosphere models of gamma-ray bursts and X-ray flashes. Astrophys. J. 628, 847–852 (2005). doi:10.1086/430818

    ADS  Google Scholar 

  • B.N. Rogers, R.E. Denton, J.F. Drake, M.A. Shay, Role of dispersive waves in collisionless magnetic reconnection. Phys. Rev. Lett. 87(19), 195004 (2001). doi:10.1103/PhysRevLett.87.195004

    ADS  Google Scholar 

  • M.M. Romanova, R.V.E. Lovelace, Magnetic field, reconnection, and particle acceleration in extragalactic jets. Astron. Astrophys. 262, 26–36 (1992)

    ADS  Google Scholar 

  • M.M. Romanova, G.V. Ustyugova, A.V. Koldoba, V.M. Chechetkin, R.V.E. Lovelace, Dynamics of magnetic loops in the coronae of accretion disks. Astrophys. J. 500, 703 (1998). doi:10.1086/305760

    ADS  Google Scholar 

  • R. Samtaney, N.F. Loureiro, D.A. Uzdensky, A.A. Schekochihin, S.C. Cowley, Formation of plasmoid chains in magnetic reconnection. Phys. Rev. Lett. 103(10), 105004 (2009). doi:10.1103/PhysRevLett.103.105004

    ADS  Google Scholar 

  • R. Schopper, H. Lesch, G.T. Birk, Magnetic reconnection and particle acceleration in active galactic nuclei. Astron. Astrophys. 335, 26–32 (1998)

    ADS  Google Scholar 

  • L.S. Shepherd, P.A. Cassak, Comparison of Secondary Islands in collisional reconnection to hall reconnection. Phys. Rev. Lett. 105(1), 015004 (2010). doi:10.1103/PhysRevLett.105.015004

    ADS  Google Scholar 

  • K. Shibata, S. Tanuma, Plasmoid-induced-reconnection and fractal reconnection. Earth Planets Space 53, 473–482 (2001)

    ADS  Google Scholar 

  • A. Spitkovsky, Pulsar magnetosphere: the incredible machine, in 40 Years of Pulsars: Millisecond Pulsars, Magnetars and More, ed. by C. Bassa, Z. Wang, A. Cumming, V.M. Kaspi. American Institute of Physics Conference Series, vol. 983 (2008), pp. 20–28 doi:10.1063/1.2900143

    Google Scholar 

  • H.C. Spruit, F. Daigne, G. Drenkhahn, Large scale magnetic fields and their dissipation in GRB fireballs. Astron. Astrophys. 369, 694–705 (2001). doi:10.1051/0004-6361:20010131

    ADS  Google Scholar 

  • R.S. Steinolfson, G. van Hoven, Radiative tearing - magnetic reconnection on a fast thermal-instability time scale. Astrophys. J. 276, 391–398 (1984). doi:10.1086/161623

    ADS  Google Scholar 

  • P.A. Sweet, The neutral point theory of solar flares, in Electromagnetic Phenomena in Cosmical Physics, ed. by B. Lehnert. IAU Symposium, vol. 6 (1958), p. 123

    Google Scholar 

  • C. Thompson, A model of gamma-ray bursts. Mon. Not. R. Astron. Soc. 270, 480 (1994)

    ADS  Google Scholar 

  • C. Thompson, R.C. Duncan, The soft gamma repeaters as very strongly magnetized neutron stars - I. Radiative mechanism for outbursts. Mon. Not. R. Astron. Soc. 275, 255–300 (1995)

    ADS  Google Scholar 

  • C. Thompson, R.C. Duncan, The giant flare of 1998 August 27 from SGR 1900+14. II. Radiative mechanism and physical constraints on the source. Astrophys. J. 561, 980–1005 (2001). doi:10.1086/323256

    ADS  Google Scholar 

  • C. Thompson, M. Lyutikov, S.R. Kulkarni, Electrodynamics of magnetars: implications for the persistent X-ray emission and spin-down of the soft gamma repeaters and anomalous X-ray pulsars. Astrophys. J. 574, 332–355 (2002). doi:10.1086/340586

    ADS  Google Scholar 

  • C.A. Tout, J.E. Pringle, Can a disc dynamo generate large-scale magnetic fields? Mon. Not. R. Astron. Soc. 281, 219–225 (1996)

    ADS  Google Scholar 

  • M. Umizaki, S. Shibata, Method of the particle-in-cell simulation for the Y-point in the pulsar magnetosphere. Publ. Astron. Soc. Jpn. 62, 131 (2010)

    ADS  Google Scholar 

  • D.A. Uzdensky, Partial field opening and current sheet formation in the disk magnetosphere. Astrophys. J. 572, 432–444 (2002). doi:10.1086/340308

    ADS  Google Scholar 

  • D.A. Uzdensky, Magnetic interaction between stars and accretion disks. Astrophys. Space Sci. 292, 573–585 (2004). doi:10.1023/B:ASTR.0000045064.93078.87

    ADS  Google Scholar 

  • D.A. Uzdensky, Magnetic Reconnection in Astrophysical Systems (2006)

    Google Scholar 

  • D.A. Uzdensky, The fast collisionless reconnection condition and the self-organization of solar coronal heating. Astrophys. J. 671, 2139–2153 (2007). doi:10.1086/522915

    ADS  Google Scholar 

  • D.A. Uzdensky, Magnetic reconnection of super-strong magnetic fields in magnetar magnetospheres. Bull. Am. Phys. Soc. 53, 4-3200843 (2008)

    Google Scholar 

  • D.A. Uzdensky, J. Goodman, Statistical description of a magnetized corona above a turbulent accretion disk. Astrophys. J. 682, 608–629 (2008). doi:10.1086/588812

    ADS  Google Scholar 

  • D.A. Uzdensky, A.I. MacFadyen, Stellar explosions by magnetic towers. Astrophys. J. 647, 1192–1212 (2006). doi:10.1086/505621

    ADS  Google Scholar 

  • D.A. Uzdensky, A.I. MacFadyen, Magnetar-driven magnetic tower as a model for gamma-ray bursts and asymmetric supernovae. Astrophys. J. 669, 546–560 (2007a). doi:10.1086/521322

    ADS  Google Scholar 

  • D.A. Uzdensky, A.I. MacFadyen, Magnetically dominated jets inside collapsing stars as a model for gamma-ray bursts and supernova explosions. Phys. Plasmas 14(5), 056506 (2007b). doi:10.1063/1.2721969

    ADS  Google Scholar 

  • D.A. Uzdensky, J.C. McKinney, Magnetic reconnection with radiative cooling. I. Optically-thin regime. Phys. Plasmas (2010, submitted). arXiv:1007.0774 [astro-ph]

  • D.A. Uzdensky, A. Königl, C. Litwin, Magnetically linked star-disk systems. I. Force-free magnetospheres and effects of disk resistivity. Astrophys. J. 565, 1191–1204 (2002a). doi:10.1086/324720

    ADS  Google Scholar 

  • D.A. Uzdensky, A. Königl, C. Litwin, Magnetically linked star-disk systems. II. Effects of plasma inertia and reconnection in the magnetosphere. Astrophys. J. 565, 1205–1215 (2002b). doi:10.1086/324724

    ADS  Google Scholar 

  • D.A. Uzdensky, N.F. Loureiro, A.A. Schekochihin, Fast magnetic reconnection in the plasmoid-dominated regime. Phys. Rev. Lett. 105(23), 235002 (2010). doi:10.1103/PhysRevLett.105.235002

    ADS  Google Scholar 

  • A.A. van Ballegooijen, Energy release in stellar magnetospheres. Space Sci. Rev. 68, 299–307 (1994). doi:10.1007/BF00749156

    ADS  Google Scholar 

  • M.H.P.M. van Putten, A. Levinson, Theory and astrophysical consequences of a magnetized torus around a rapidly rotating black hole. Astrophys. J. 584, 937–953 (2003). doi:10.1086/345900

    ADS  Google Scholar 

  • M.H.P.M. van Putten, E.C. Ostriker, Hyper- and suspended-accretion states of rotating black holes and the durations of gamma-ray bursts. Astrophys. J. Lett. 552, 31–34 (2001). doi:10.1086/320253

    ADS  Google Scholar 

  • N. Vlahakis, A. Königl, Magnetohydrodynamics of gamma-ray burst outflows. Astrophys. J. Lett. 563, 129–132 (2001). doi:10.1086/338652

    ADS  Google Scholar 

  • B. Warner, P.A. Woudt, Dwarf nova oscillations and quasi-periodic oscillations in cataclysmic variables - II. A low-inertia magnetic accretor model. Mon. Not. R. Astron. Soc. 335, 84–98 (2002). doi:10.1046/j.1365-8711.2002.05596.x

    ADS  Google Scholar 

  • N. Watanabe, T. Yokoyama, Two-dimensional magnetohydrodynamic simulations of relativistic magnetic reconnection. Astrophys. J. Lett. 647, 123–126 (2006). doi:10.1086/507520

    ADS  Google Scholar 

  • P.M. Woods, C. Thompson, in Soft Gamma Repeaters and Anomalous X-ray Pulsars: Magnetar Candidates, ed. by W.H.G. Lewin, M. van der Klis (2006), pp. 547–586

    Google Scholar 

  • S.E. Woosley, Gamma-ray bursts from stellar mass accretion disks around black holes. Astrophys. J. 405, 273–277 (1993). doi:10.1086/172359

    ADS  Google Scholar 

  • M. Yamada, R. Kulsrud, H. Ji, Magnetic reconnection. Rev. Mod. Phys. 82, 603–664 (2010). doi:10.1103/RevModPhys.82.603

    ADS  Google Scholar 

  • M. Yamada, Y. Ren, H. Ji, J. Breslau, S. Gerhardt, R. Kulsrud, A. Kuritsyn, Experimental study of two-fluid effects on magnetic reconnection in a laboratory plasma with variable collisionality. Phys. Plasmas 13, 2119 (2006). doi:10.1063/1.2203950

    ADS  Google Scholar 

  • S. Zenitani, M. Hoshino, The generation of nonthermal particles in the relativistic magnetic reconnection of pair plasmas. Astrophys. J. Lett. 562, 63–66 (2001). doi:10.1086/337972

    ADS  Google Scholar 

  • S. Zenitani, M. Hoshino, Three-dimensional evolution of a relativistic current sheet: triggering of magnetic reconnection by the guide field. Phys. Rev. Lett. 95(9), 095001 (2005). doi:10.1103/PhysRevLett.95.095001

    ADS  Google Scholar 

  • S. Zenitani, M. Hoshino, Particle acceleration and magnetic dissipation in relativistic current sheet of pair plasmas. Astrophys. J. 670, 702–726 (2007). doi:10.1086/522226

    ADS  Google Scholar 

  • S. Zenitani, M. Hoshino, The role of the guide field in relativistic pair plasma reconnection. Astrophys. J. 677, 530–544 (2008). doi:10.1086/528708

    ADS  Google Scholar 

  • S. Zenitani, M. Hesse, A. Klimas, Two-fluid magnetohydrodynamic simulations of relativistic magnetic reconnection. Astrophys. J. 696, 1385–1401 (2009). doi:10.1088/0004-637X/696/2/1385

    ADS  Google Scholar 

  • E.G. Zweibel, Magnetic reconnection in partially ionized gases. Astrophys. J. 340, 550–557 (1989). doi:10.1086/167416

    ADS  Google Scholar 

  • E.G. Zweibel, M. Yamada, Magnetic reconnection in astrophysical and laboratory plasmas. Annu. Rev. Astron. Astrophys. 47, 291–332 (2009). doi:10.1146/annurev-astro-082708-101726

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri A. Uzdensky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uzdensky, D.A. Magnetic Reconnection in Extreme Astrophysical Environments. Space Sci Rev 160, 45–71 (2011). https://doi.org/10.1007/s11214-011-9744-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-011-9744-5

Keywords

Navigation