Skip to main content
Log in

Interior Evolution of Mercury

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The interior evolution of Mercury—the innermost planet in the solar system, with its exceptional high density—is poorly known. Our current knowledge of Mercury is based on observations from Mariner 10’s three flybys. That knowledge includes the important discoveries of a weak, active magnetic field and a system of lobate scarps that suggests limited radial contraction of the planet during the last 4 billion years. We review existing models of Mercury’s interior evolution and further present new 2D and 3D convection models that consider both a strongly temperature-dependent viscosity and core cooling. These studies provide a framework for understanding the basic characteristics of the planet’s internal evolution as well as the role of the amount and distribution of radiogenic heat production, mantle viscosity, and sulfur content of the core have had on the history of Mercury’s interior.

The existence of a dynamo-generated magnetic field suggests a growing inner core, as model calculations show that a thermally driven dynamo for Mercury is unlikely. Thermal evolution models suggest a range of possible upper limits for the sulfur content in the core. For large sulfur contents the model cores would be entirely fluid. The observation of limited planetary contraction (∼1–2 km)—if confirmed by future missions—may provide a lower limit for the core sulfur content. For smaller sulfur contents, the planetary contraction obtained after the end of the heavy bombardment due to inner core growth is larger than the observed value. Due to the present poor knowledge of various parameters, for example, the mantle rheology, the thermal conductivity of mantle and crust, and the amount and distribution of radiogenic heat production, it is not possible to constrain the core sulfur content nor the present state of the mantle. Therefore, it is difficult to robustly predict whether or not the mantle is conductive or in the convective regime. For instance, in the case of very inefficient planetary cooling—for example, as a consequence of a strong thermal insulation by a low conductivity crust and a stiff Newtonian mantle rheology—the predicted sulfur content can be as low as 1 wt% to match current estimates of planetary contraction, making deep mantle convection likely. Efficient cooling—for example, caused by the growth of a crust strongly in enriched in radiogenic elements—requires more than 6.5 wt% S. These latter models also predict a transition from a convective to a conductive mantle during the planet’s history. Data from future missions to Mercury will aid considerably our understanding of the evolution of its interior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M.H. Acuña, J.E.P. Connerney, N.F. Ness, R.P. Lin, D. Mitchell, C.W. Carlson, J. McFadden, K.A. Anderson, H. Rème, C. Mazelle, D. Vignes, P. Wasilewski, P. Cloutier, Science 284, 790–793 (1999)

    ADS  Google Scholar 

  • O. Aharonson, M.T. Zuber, S.C. Solomon, Earth Planet. Sci. Lett. 218, 261–268 (2004)

    ADS  Google Scholar 

  • J.D. Anderson, R.F. Jurgens, E.L. Lau, M.A. Slade, III, G. Schubert, Icarus 124, 690–697 (1996)

    ADS  Google Scholar 

  • J.D. Anderson, G. Colombo, P.B. Esposito, E.L. Lau, G.B. Trager, Icarus 71, 337–349 (1987)

    ADS  Google Scholar 

  • J. Baker, M. Bizzarro, N. Wittig, J. Connelly, H. Haack, Nature 436, 1127 (2005)

    ADS  Google Scholar 

  • Basaltic Volcanism Study Project, Basaltic Volcanism on the Terrestrial Planets (Pergamon, New York, 1981), 1286 pp

    Google Scholar 

  • V. Belleguic, P. Lognonné, M.A. Wieczorek, J. Geophys. Res. 110, E11005 (2005), doi:10.1029/2005JE002437

    ADS  Google Scholar 

  • C.M. Bertka, J.R. Holloway, J. Geophys. Res. 98, 19,755–19,766 (1993)

    ADS  Google Scholar 

  • A.B. Binder, M.A. Lange, J. Geophys. Res. 85, 3194–3208 (1980)

    ADS  Google Scholar 

  • R. Boehler, Earth Planet. Sci. Lett. 111, 217–227 (1992)

    ADS  Google Scholar 

  • R. Boehler, Phys. Earth Planet. Int. 96, 181–186 (1996)

    ADS  Google Scholar 

  • S.I. Braginsky, Geomag. Aeron. 4, 698–712 (1964)

    Google Scholar 

  • D. Breuer, Thermo-chemical evolution of Mercury, EPSC 2006, Berlin, Germany, Sept. 18th–22th, Talk EPSC2006-A-00755, 2006

  • D. Breuer, T. Spohn, J. Geophys. Res.-Planets 108(E7), 5072 (2003). doi:10.1029/20002JE001999

    ADS  Google Scholar 

  • D. Breuer, T. Spohn, Planet. Space Sci. 54, 153–169 (2006)

    ADS  Google Scholar 

  • A.G.W. Cameron, Jr. B. Fegley, W. Benz, W.L. Slattery, in Mercury, ed. by F. Vilas et al. (University of Arizona Press, Tucson, 1988), pp. 692–708

    Google Scholar 

  • C. Christensen, Nature 444, 1056–1058 (2006)

    ADS  Google Scholar 

  • C. Clauser, E. Huenges, Thermal Conductivity of Rocks and Minerals, Rock Physics and Phase Relations, A Handbook of Physical Constants. AGU Reference Shelf 3, 1995

  • S.M. Clifford, F.P. Fanale, Lunar Planet. Sci. XVI 144–145 (1985)

    ADS  Google Scholar 

  • J.E.P. Connerney, N.F. Ness, in Mercury (Univ. of Arizona Press, Tucson, 1988), pp. 494–513

    Google Scholar 

  • V. Conzelmann, Thermische Evolution des Planeten Merkur berechnet unter Anwendung verschiedener Viskositätsgesetze, Ph.D. Thesis, University Münster, 1999

  • A.C. Cook, M.S. Robinson, J. Geophys. Res. 105 9429–9443 (2000)

    ADS  Google Scholar 

  • B.M. Cordell, Tectonism and the interior of Mercury, Ph.D. thesis, University of Arizona, Tucson, 1977, 124 pp

  • B.M. Cordell, R.G. Strom, Phys. Earth Planet. Inter. 15 146–155 (1977)

    ADS  Google Scholar 

  • A. Davaille, C. Jaupart, J. Fluid Mech. 253 141–166 (1993)

    ADS  Google Scholar 

  • B. Fegley Jr., A.G.W. Cameron, Earth Planet. Sci. Lett. 82 207–222 (1987)

    ADS  Google Scholar 

  • Y. Fei, C.M. Bertka, L.W. Finger, Science 275 1621–1623 (1997)

    Google Scholar 

  • Y. Fei, J. Li, C.M. Bertka, C.T. Prewitt, Am. Mineral. 85 1830–1833 (2000)

    Google Scholar 

  • P.E. Fricker, R.T. Reynolds, A.L. Summers, P.M. Cassen, Nature 259 293–294 (1976)

    ADS  Google Scholar 

  • G. Giampieri, A. Balogh, Planet. Space Sci. 50 757–762 (2002)

    ADS  Google Scholar 

  • R. Grard, A. Balogh, Planet. Space Sci. 49 1395–1407 (2001)

    ADS  Google Scholar 

  • O. Grasset, E.M. Parmentier, J. Geophys. Res. 103 18,171–18,181 (1998)

    ADS  Google Scholar 

  • L. Grossman, Geochim. Cosmochim. Acta 36, 597–619 (1972)

    ADS  Google Scholar 

  • B.H. Hager, R.W. Clayton, in Mantle Convection: Plate Tectonics and Global Dynamics, ed. by W.R. Peltier (Gordon and Breach, New York, 1989), pp. 675–763

    Google Scholar 

  • H. Harder, G. Schubert, Icarus 151, 118–122 (2001)

    ADS  Google Scholar 

  • J.K. Harmon, Adv. Space Res., 19, 1487–1496 (1997)

    ADS  Google Scholar 

  • S.A. Hauck II, A.J. Dombard, R.J. Phillips, S.C. Solomon, Earth Planet. Sci. Lett. 222, 713–728 (2004)

    ADS  Google Scholar 

  • S.A. Hauck III, R.J. Phillips, J. Geophys. Res. 107, 5052 (2002). doi:5010.1029/2001JE001801

    Google Scholar 

  • M.H. Heimpel, J.M. Aurnou, F.M. Al-Shamali, N. Gomez Perez, Earth Planet. Sci. Lett. 236, 542–557 (2005)

    ADS  Google Scholar 

  • C.T. Herzberg, P. Raterron, J. Zhang, Geophys. Geochem. Geosyst. 1 (2000). doi:10.129/2000GC000089

  • M.M. Hirschmann, Geophys. Geochem. Geosyst. 1 (2000). doi:10.129/2000GC000070

  • A.M. Hofmeister, Science 283(5408), 1699 (1999)

    ADS  Google Scholar 

  • R. Jeanloz, D.L. Mitchell, A.L. Sprague, I. de Pater, Science 268, 1455–1457 (1995)

    ADS  Google Scholar 

  • S. Karato, D.C. Rubie, J. Geophys. Res. 102, 20111–20122 (1997)

    ADS  Google Scholar 

  • S.-I. Karato, P. Wu, Science 260, 771–778 (1993)

    ADS  Google Scholar 

  • H.H. Kieffer, Science 194, 1344–1346 (1976)

    ADS  Google Scholar 

  • T. Kleine, C. Münker, K. Mezger, H. Palme, Nature 418, 952–955 (2002)

    ADS  Google Scholar 

  • T. Kleine, K. Mezger, H. Palme, E. Scherer, C. Munker, AGU, Fall Meeting 2004, Abstract P31C-04, 2004

  • S. Labrosse, Phys. Earth Planet. Interiors 140, 127–143 (2003)

    ADS  Google Scholar 

  • T. Lee, D.A. Papanastassiou, G.J. Wasserburg, Geophys. Res. Lett. 3, 109–112 (1976)

    ADS  Google Scholar 

  • J.S. Lewis, Science 186, 440–443 (1972)

    ADS  Google Scholar 

  • J.S. Lewis, in Mercury, ed. by F. Vilas et al. (University of Arizona Press, Tucson, 1988), pp. 651–666

    Google Scholar 

  • K. Lodders, B. Fegley Jr., The Planetary Scientist’s Companion (Oxford University Press, New York, 1998), 371 pp

    Google Scholar 

  • J.L. Margot, S.J. Peale, R.F. Jurgens, M.A. Slade, I.V. Holin, Science 316, 710–714 (2007)

    ADS  Google Scholar 

  • C.A. McCammon, A.E. Ringwood, I. Jackson, Geophys. J. Roy. Astron. Soc. 72, 577–595 (1983)

    Google Scholar 

  • M.K. McNutt, J. Geophys. Res. 89, 11180–11194 (1984)

    Article  ADS  Google Scholar 

  • L.-N. Moresi, V.S. Solomatov, Phys. Fluids 7, 2154–2162 (1995)

    MATH  ADS  Google Scholar 

  • N.F. Ness, K.W. Behannon, R.P. Lepping, Y.C. Whang, K.H. Schatten, Science 185, 151–160 (1974)

    ADS  Google Scholar 

  • N.F. Ness, K.W. Behannon, R.P. Lepping, Y.C. Whang, Icarus 28, 479–488 (1976)

    ADS  Google Scholar 

  • F. Nimmo, D. Stevenson, J. Geophys. Res. 105, 11969–11979 (2000)

    ADS  Google Scholar 

  • F. Nimmo, T.R. Watters, Geophys. Res. Lett. 31, L02701 (2004)

    Google Scholar 

  • M. Pauer, O. Fleming, K. Čadek, J. Geophys. Res. 111(E11), E1100 (2006). doi:10.1029/2005JE002511

    Google Scholar 

  • M. Pauer, D. Breuer, T. Spohn, Subsurface structure of Mercury—Expected results from gravity/topography analyses (2007, submitted)

  • S.J. Peale, in Mercury, ed. by F. Vilas et al. (University of Arizona Press, Tucson, 1988), pp. 494–513

    Google Scholar 

  • C.C. Reese, V.S. Solomatov, L.N. Moresi, J. Geophys. Res. 103, 13643–13658 (1998)

    ADS  Google Scholar 

  • C.C. Reese, V.S. Solomatov, L.-N. Moresi, Icarus 139, 67–80 (1999)

    ADS  Google Scholar 

  • F.M. Richter, H.C. Nataf, S.F. Daly, J. Fluid Mech. 129, 183 (1983)

    ADS  Google Scholar 

  • A.E. Ringwood, Geochem. J. 11, 111–135 (1977)

    Google Scholar 

  • M.S. Robinson, M.E. Davies, T.R. Colvin, K.E. Edwards, J. Geophys. Res. 104, 30 (1999)

    Google Scholar 

  • M.S. Robinson, G.J. Taylor, Meteorit. Planet. Sci. 36, 841–847 (2001)

    Article  ADS  Google Scholar 

  • S.K. Runcorn, Nature 253, 701–703 (1975)

    ADS  Google Scholar 

  • C.T. Russel, D.N. Baker, J.A. Slavin, in Mercury, ed. by F. Vilas, C.R. Chapman, M.S. Matthews (Univ. Press of Arizona, Tucson, 1988), pp. 514–561

    Google Scholar 

  • G. Schubert, M.N. Ross, D.J. Stevenson, T. Spohn, in Mercury, ed. by F. Vilas et al. (Univ. Press of Arizona, Tucson, 1988), pp. 429–460

    Google Scholar 

  • G. Schubert, D. Bercovici, G.A. Glatzmeier, J. Geophys. Res. 95, 14105–14129 (1990)

    ADS  Google Scholar 

  • G. Schubert, S.C. Solomon, D.L. Turcotte, M.J. Drake, N.H. Sleep, in Mars, ed. by H.H. Kieffer, B.M. Jakobsky, C.W. Snyder, M.S. Matthews (University of Arizona Press, Tucson, 1992), pp. 147–183

    Google Scholar 

  • G. Schubert, D.L. Turcotte, P. Olson, Mantle Convection in the Earth and Planets (Cambridge University Press, Cambridge, 2001), 956 pp

    Google Scholar 

  • S. Schumacher, D. Breuer, J. Geophys. Res. 111, E02006 (2006). doi:10.1029/2005JE002429

    Google Scholar 

  • B.E. Schwab, A.D. Johnston, J. Petrol. 42, 1789–1811 (2001)

    Google Scholar 

  • U. Seipold, Phys. Earth Planet. Int. 69(3–4), 299-303 (1992)

    ADS  Google Scholar 

  • H.N. Sharpe, D.W. Strangway, Geophys. Res. Lett. 3, 285–288 (1976)

    ADS  Google Scholar 

  • R.W. Siegfried, S.C. Solomon, Icarus 23, 192–205 (1974)

    ADS  Google Scholar 

  • D.E. Smith, M.T. Zuber, G.A. Neumann, F.G. Lemoine, J. Geophys. Res. 102, 1591–1611 (1997)

    ADS  Google Scholar 

  • V.S. Solomatov, Phys. Fluids 7, 266–274 (1995)

    MATH  ADS  Google Scholar 

  • V.S. Solomatov, L.-N. Moresi, J. Geophys. Res. 105, 21795–21817 (2000)

    ADS  Google Scholar 

  • V.S. Solomatov, C.C. Reese, Mantle convection and thermal evolution of Mercury reviseted, in LPI Conference Mercury: Space Environment, Surface, and Interior, Chicago, 2001

  • S.C. Solomon, Icarus 28, 509–521 (1976)

    ADS  Google Scholar 

  • S.C. Solomon, Phys. Earth Planet. Inter. 15, 135–145 (1977)

    ADS  Google Scholar 

  • S.C. Solomon, Earth Planet. Sci. Lett. 19, 168–182 (1979)

    Google Scholar 

  • S.C. Solomon, R.L. McNutt Jr., R.E. Gold, M.H. Acuña, D.N. Baker, W.V. Boynton, C.R. Chapman, A.F. Cheng, G. Gloeckler, J.W. Head III, S.M. Krimigis, W.E. McClintock, S.L. Murchie, S.J. Peale, R.J. Phillips, M.S. Robinson, J.A. Slavin, D.E. Smith, R.G. Strom, J.I. Trombka, M.T. Zuber, Planet. Space Sci. 49, 1445–1465 (2001)

    ADS  Google Scholar 

  • C.P. Sonett, D.S. Colburn, K. Schwartz, Icarus 24, 231–255 (1975)

    ADS  Google Scholar 

  • T. Spohn, F. Sohl, K. Wieczerkowski, V. Conzelmann, Planet. Space Sci. 49, 1561–1570 (2001)

    ADS  Google Scholar 

  • T. Spohn, Icarus 90, 222–236 (1991)

    ADS  Google Scholar 

  • A.L. Sprague, R.W.H. Kozlowski, F.C. Witteborn, D.P. Cruikshank, D.H. Wooden, Icarus 109, 156–167 (1994)

    ADS  Google Scholar 

  • A.L. Sprague, D.B. Nash, F.C. Witteborn, D.P. Cruikshank, Adv. Space Res. 19, 1507–1510 (1997)

    ADS  Google Scholar 

  • P.D. Spudis, J.E. Guest, in Mercury, ed. by F. Vilas et al. (University of Arizona Press, Tucson, 1988), pp. 118–164

    Google Scholar 

  • S. Stanley, J. Bloxham, W.E. Hutchinson, M.T. Zuber, Earth Planet. Sci. Lett. 234, 27–38 (2005)

    ADS  Google Scholar 

  • D.J. Stevenson, Earth Planet. Sci. Lett. 82, 114–120 (1987)

    ADS  Google Scholar 

  • D.J. Stevenson, in Origin of the Earth, ed. by H.E. Newsom, J.H. Jones (Oxford University Press, New York, 1990), pp. 231–249

    Google Scholar 

  • D.J. Stevenson, T. Spohn, G. Schubert, Icarus 54, 466–489 (1983)

    ADS  Google Scholar 

  • R.G. Strom, Adv. Space Res. 19, 1471–1485 (1997)

    ADS  Google Scholar 

  • R.G. Strom, N.J. Trask, J.E. Guest, J. Geophys. Res. 80, 2478–2507 (1975)

    ADS  Google Scholar 

  • G.J. Taylor, E.R.D. Scott, in Treatise on Geochemistry, vol. 1, Meteorites, Comets and Planets, ed. by M.A. Davis (Elsevier, Amsterdam, 2005), pp. 477–485

    Google Scholar 

  • M.N. Toksöz, A.T. Hsui, D.H. Johnston, Thermal evolution of the Moon and the terrestrial planets, in The Soviet–American Conference on Cosmochemistry of the Moon and Planets, NASA SP-370, 1978, pp. 245–328

  • D.C. Tozer, Phil. Trans. Roy. Soc. 258, 252–271 (1965)

    ADS  Google Scholar 

  • T.M. Usselman, Am. J. Sci. 275, 278–290 (1975)

    Article  Google Scholar 

  • T. VanHoolst, F. Sohl, I. Holin, O. Verhoeven, V. Dehant, T. Spohn (2007), this issue

  • F. Vilas, in Mercury, ed. by F. Vilas, C.R. Chapman, M.S. Matthews (University of Arizona Press, Tucson, 1988), pp. 622–650

    Google Scholar 

  • T.R. Watters, M.S. Robinson, A.C. Cook, Geology 26, 991–994 (1998)

    ADS  Google Scholar 

  • T.R. Watters, R.A. Schultz, M.S. Robinson, A.C. Cook, Geophys. Res. Lett. 29(11), 1542 (2002). doi:10.1029/2001GL014308

    ADS  Google Scholar 

  • T.R. Watters, M.S. Robinson, C.R. Bina, P.D. Spudis, Geophys. Res. Lett. 31, 04701 (2004)

    Google Scholar 

  • T.R. Watters, F. Nimmo, M.S. Robinson, Geology 33(8), 669–672 (2005). doi:10.1130/G21678.1

    ADS  Google Scholar 

  • J. Weertman, J.R. Weertman, Annu. Rev. Earth Planet. Sci. 3, 293–315 (1975)

    ADS  Google Scholar 

  • S.J. Weidenschilling, Icarus 35, 99–111 (1978)

    ADS  Google Scholar 

  • G.W. Wetherill, Science 228, 877–879 (1985)

    ADS  Google Scholar 

  • G.W. Wetherill, in Mercury, ed. by F. Vilas et al. (University of Arizona Press, Tucson, 1988), pp. 670–691

    Google Scholar 

  • J. Wicht, M. Mandea, F. Takahashi, U.R. Christensen, M. Matsushima, B. Langlais (2007), this issue

  • A. Zebib, G. Schubert, J.L. Dein, R.C. Paliwal, Geophys. Astrophys. Fluid Dyn. 23, 1–42 (1983)

    MATH  ADS  Google Scholar 

  • J. Zhang, C. Herzberg, J. Geophys. Res. 99, 17,729–17,742 (1994)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doris Breuer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breuer, D., Hauck, S.A., Buske, M. et al. Interior Evolution of Mercury. Space Sci Rev 132, 229–260 (2007). https://doi.org/10.1007/s11214-007-9228-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-007-9228-9

Keywords

Navigation