Skip to main content
Log in

Growth hormone receptor modulators

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Growth hormone (GH) regulates somatic growth, substrate metabolism and body composition. Its actions are elaborated through the GH receptor (GHR). GHR signalling involves the role of at least three major pathways, STATs, MAPK, and PI3-kinase/Akt. GH receptor function can be modulated by changes to the ligand, to the receptor or by factors regulating signal transduction. Insights on the physico-chemical basis of the binding of GH to its receptor and the stoichiometry required for activation of the GH receptor-dimer has led to the development of novel GH agonists and antagonists. Owing to the fact that GH has short half-life, several approaches have been taken to create long-acting GHR agonists. This includes the pegylation, sustained release formulations, and ligand-receptor fusion proteins. Pegylation of a GH analogue (pegvisomant) which binds but not activate signal transduction forms the basis of a new successful approach to the treatment of acromegaly. GH receptors can be regulated at a number of levels, by modifying receptor expression, surface availability and signalling. Insulin, thyroid hormones and sex hormones are among hormones that modulate GHR through some of these mechanisms. Estrogens inhibit GH signalling by stimulating the expression of SOCS proteins which are negative regulators of cytokine receptor signalling. This review of GHR modulators will cover the effects of ligand modification, and of factors regulating receptor expression and signalling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. de Vos AM, Ultsch M, Kossiakoff AA. Human growth hormone and extracellular domain of its receptor: crystal structure of the complex. Science. 1992;255:306–12. doi:10.1126/science.1549776.

    PubMed  Google Scholar 

  2. Abdel-Meguid SS, Shieh HS, Smith WW, Dayringer HE, Violand BN, Bentle LA. Three-dimensional structure of a genetically engineered variant of porcine growth hormone. Proc Natl Acad Sci USA. 1987;84:6434–7. doi:10.1073/pnas.84.18.6434.

    PubMed  CAS  Google Scholar 

  3. Cunningham BC, Ultsch M, De Vos AM, Mulkerrin MG, Clauser KR, Wells JA. Dimerization of the extracellular domain of the human growth hormone receptor by a single hormone molecule. Science. 1991;254:821–5. doi:10.1126/science.1948064.

    PubMed  CAS  Google Scholar 

  4. Rowlinson SW, Behncken SN, Rowland JE, Clarkson RW, Strasburger CJ, Wu Z, et al. Activation of chimeric and full-length growth hormone receptors by growth hormone receptor monoclonal antibodies. A specific conformational change may be required for full-length receptor signaling. J Biol Chem. 1998;273:5307–14. doi:10.1074/jbc.273.9.5307.

    PubMed  CAS  Google Scholar 

  5. Leung KC. Regulation of cytokine receptor signaling by nuclear hormone receptors: a new paradigm for receptor interaction. DNA Cell Biol. 2004;23:463–74. doi:10.1089/1044549041562285.

    PubMed  CAS  Google Scholar 

  6. Zhu T, Goh EL, Graichen R, Ling L, Lobie PE. Signal transduction via the growth hormone receptor. Cell Signal. 2001;13:599–616. doi:10.1016/S0898-6568(01)00186-3.

    PubMed  CAS  Google Scholar 

  7. Lanning NJ, Carter-Su C. Recent advances in growth hormone signaling. Rev Endocr Metab Disord. 2006;7:225–35. doi:10.1007/s11154-007-9025-5.

    PubMed  CAS  Google Scholar 

  8. Adams TE, Hansen JA, Starr R, Nicola NA, Hilton DJ, Billestrup N. Growth hormone preferentially induces the rapid, transient expression of SOCS-3, a novel inhibitor of cytokine receptor signaling. J Biol Chem. 1998;273:1285–7. doi:10.1074/jbc.273.3.1285.

    PubMed  CAS  Google Scholar 

  9. Flores-Morales A, Greenhalgh CJ, Norstedt G, Rico-Bautista E. Negative regulation of growth hormone receptor signaling. Mol Endocrinol. 2006;20:241–53. doi:10.1210/me.2005-0170.

    PubMed  CAS  Google Scholar 

  10. Greenhalgh CJ, Rico-Bautista E, Lorentzon M, Thaus AL, Morgan PO, Willson TA, et al. SOCS2 negatively regulates growth hormone action in vitro and in vivo. J Clin Invest. 2005;115:397–406.

    PubMed  CAS  Google Scholar 

  11. Hackett RH, Wang YD, Sweitzer S, Feldman G, Wood WI, Larner AC. Mapping of a cytoplasmic domain of the human growth hormone receptor that regulates rates of inactivation of Jak2 and Stat proteins. J Biol Chem. 1997;272:11128–32. doi:10.1074/jbc.272.17.11128.

    PubMed  CAS  Google Scholar 

  12. Laron Z. Growth hormone insensitivity (Laron syndrome). Rev Endocr Metab Disord. 2002;3:347–55. doi:10.1023/A:1020905725012.

    PubMed  CAS  Google Scholar 

  13. Laron Z, Pertzelan A, Mannheimer S. Genetic pituitary dwarfism with high serum concentation of growth hormone–a new inborn error of metabolism? Isr J Med Sci. 1966;2:152–5.

    PubMed  CAS  Google Scholar 

  14. Amselem S, Duquesnoy P, Attree O, Novelli G, Bousnina S, Postel-Vinay MC, et al. Laron dwarfism and mutations of the growth hormone-receptor gene. N Engl J Med. 1989;321:989–95.

    PubMed  CAS  Google Scholar 

  15. Godowski PJ, Leung DW, Meacham LR, Galgani JP, Hellmiss R, Keret R, et al. Characterization of the human growth hormone receptor gene and demonstration of a partial gene deletion in two patients with Laron-type dwarfism. Proc Natl Acad Sci USA. 1989;86:8083–7. doi:10.1073/pnas.86.20.8083.

    PubMed  CAS  Google Scholar 

  16. Kaji H, Nose O, Tajiri H, Takahashi Y, Iida K, Takahashi T, et al. Novel compound heterozygous mutations of growth hormone (GH) receptor gene in a patient with GH insensitivity syndrome. J Clin Endocrinol Metab. 1997;82:3705–9. doi:10.1210/jc.82.11.3705.

    PubMed  CAS  Google Scholar 

  17. Woods KA, Fraser NC, Postel-Vinay MC, Savage MO, Clark AJ. A homozygous splice site mutation affecting the intracellular domain of the growth hormone (GH) receptor resulting in Laron syndrome with elevated GH-binding protein. J Clin Endocrinol Metab. 1996;81:1686–90. doi:10.1210/jc.81.5.1686.

    PubMed  CAS  Google Scholar 

  18. Walker JL, Crock PA, Behncken SN, Rowlinson SW, Nicholson LM, Boulton TJ, et al. A novel mutation affecting the interdomain link region of the growth hormone receptor in a Vietnamese girl, and response to long-term treatment with recombinant human insulin-like growth factor-I and luteinizing hormone-releasing hormone analogue. J Clin Endocrinol Metab. 1998;83:2554–61. doi:10.1210/jc.83.7.2554.

    PubMed  CAS  Google Scholar 

  19. Rosenfeld RG, Belgorosky A, Camacho-Hubner C, Savage MO, Wit JM, Hwa V. Defects in growth hormone receptor signaling. Trends Endocrinol Metab. 2007;18:134–41. doi:10.1016/j.tem.2007.03.004.

    PubMed  CAS  Google Scholar 

  20. Tiulpakov A, Rubtsov P, Dedov I, Peterkova V, Bezlepkina O, Chrousos GP, et al. A novel C-terminal growth hormone receptor (GHR) mutation results in impaired GHR-STAT5 but normal STAT-3 signaling. J Clin Endocrinol Metab. 2005;90:542–7. doi:10.1210/jc.2003-2133.

    PubMed  CAS  Google Scholar 

  21. Milward A, Metherell L, Maamra M, Barahona MJ, Wilkinson IR, Camacho-Hubner C, et al. Growth hormone (GH) insensitivity syndrome due to a GH receptor truncated after Box1, resulting in isolated failure of STAT 5 signal transduction. J Clin Endocrinol Metab. 2004;89:1259–66. doi:10.1210/jc.2003-031418.

    PubMed  CAS  Google Scholar 

  22. Wan Y, Zheng YZ, Harris JM, Brown R, Waters MJ. Epitope map for a growth hormone receptor agonist monoclonal antibody, MAb 263. Mol Endocrinol. 2003;17:2240–50. doi:10.1210/me.2003-0162.

    PubMed  CAS  Google Scholar 

  23. Rowlinson SW, Barnard R, Bastiras S, Robins AJ, Brinkworth R, Waters MJ. A growth hormone agonist produced by targeted mutagenesis at binding site 1. Evidence that site 1 regulates bioactivity. J Biol Chem. 1995;270:16833–9. doi:10.1074/jbc.270.28.16833.

    PubMed  CAS  Google Scholar 

  24. Clark R, Olson K, Fuh G, Marian M, Mortensen D, Teshima G, et al. Long-acting growth hormones produced by conjugation with polyethylene glycol. J Biol Chem. 1996;271:21969–77. doi:10.1074/jbc.271.36.21969.

    PubMed  CAS  Google Scholar 

  25. Caliceti P, Veronese FM. Pharmacokinetic and biodistribution properties of poly(ethylene glycol)-protein conjugates. Adv Drug Deliv Rev. 2003;55:1261–77. doi:10.1016/S0169-409X(03)00108-X.

    PubMed  CAS  Google Scholar 

  26. Cook DM, Biller BM, Vance ML, Hoffman AR, Phillips LS, Ford KM, et al. The pharmacokinetic and pharmacodynamic characteristics of a long-acting growth hormone (GH) preparation (nutropin depot) in GH-deficient adults. J Clin Endocrinol Metab. 2002;87:4508–14. doi:10.1210/jc.2002-020480.

    PubMed  CAS  Google Scholar 

  27. Kemp SF, Fielder PJ, Attie KM, Blethen SL, Reiter EO, Ford KM, et al. Pharmacokinetic and pharmacodynamic characteristics of a long-acting growth hormone (GH) preparation (nutropin depot) in GH-deficient children. J Clin Endocrinol Metab. 2004;89:3234–40. doi:10.1210/jc.2003-030825.

    PubMed  CAS  Google Scholar 

  28. Reiter EO, Attie KM, Moshang T Jr, Silverman BL, Kemp SF, Neuwirth RB, et al. A multicenter study of the efficacy and safety of sustained release GH in the treatment of naive pediatric patients with GH deficiency. J Clin Endocrinol Metab. 2001;86:4700–6. doi:10.1210/jc.86.10.4700.

    PubMed  CAS  Google Scholar 

  29. Hoffman AR, Biller BM, Cook D, Baptista J, Silverman BL, Dao L, et al. Efficacy of a long-acting growth hormone (GH) preparation in patients with adult GH deficiency. J Clin Endocrinol Metab. 2005;90:6431–40. doi:10.1210/jc.2005-0928.

    PubMed  CAS  Google Scholar 

  30. Jostel A, Mukherjee A, Alenfall J, Smethurst L, Shalet SM. A new sustained-release preparation of human growth hormone and its pharmacokinetic, pharmacodynamic and safety profile. Clin Endocrinol (Oxf). 2005;62:623–7. doi:10.1111/j.1365-2265.2005.02271.x.

    CAS  Google Scholar 

  31. Silverman BL, Blethen SL, Reiter EO, Attie KM, Neuwirth RB, Ford KM. A long-acting human growth hormone (Nutropin Depot): efficacy and safety following two years of treatment in children with growth hormone deficiency. J Pediatr Endocrinol Metab. 2002;15 Suppl 2:715–22.

    PubMed  CAS  Google Scholar 

  32. Vlugt-Wensink KD, de Vrueh R, Gresnigt MG, Hoogerbrugge CM, van Buul-Offers SC, de Leede LG, et al. Preclinical and clinical in vitro in vivo correlation of an hGH dextran microsphere formulation. Pharm Res. 2007;24:2239–48. doi:10.1007/s11095-007-9433-y.

    PubMed  CAS  Google Scholar 

  33. Kim SJ, Hahn SK, Kim MJ, Kim DH, Lee YP. Development of a novel sustained release formulation of recombinant human growth hormone using sodium hyaluronate microparticles. J Control Release. 2005;104:323–35.

    PubMed  CAS  Google Scholar 

  34. Bidlingmaier M, Kim J, Savoy C, Kim MJ, Ebrecht N, de la Motte S, et al. Comparative pharmacokinetics and pharmacodynamics of a new sustained-release growth hormone (GH), LB03002, versus daily GH in adults with GH deficiency. J Clin Endocrinol Metab. 2006;91:2926–30. doi:10.1210/jc.2006-0514.

    PubMed  CAS  Google Scholar 

  35. Baumann G, Amburn KD, Buchanan TA. The effect of circulating growth hormone-binding protein on metabolic clearance, distribution, and degradation of human growth hormone. J Clin Endocrinol Metab. 1987;64:657–60.

    PubMed  CAS  Google Scholar 

  36. Clark RG, Mortensen DL, Carlsson LM, Spencer SA, McKay P, Mulkerrin M, et al. Recombinant human growth hormone (GH)-binding protein enhances the growth-promoting activity of human GH in the rat. Endocrinology. 1996;137:4308–15. doi:10.1210/en.137.10.4308.

    PubMed  CAS  Google Scholar 

  37. Wilkinson IR, Ferrandis E, Artymiuk PJ, Teillot M, Soulard C, Touvay C, et al. A ligand-receptor fusion of growth hormone forms a dimer and is a potent long-acting agonist. Nat Med. 2007;13:1108–13. doi:10.1038/nm1610.

    PubMed  CAS  Google Scholar 

  38. Pearce KH Jr, Cunningham BC, Fuh G, Teeri T, Wells JA. Growth hormone binding affinity for its receptor surpasses the requirements for cellular activity. Biochemistry. 1999;38:81–9. doi:10.1021/bi9817008.

    PubMed  CAS  Google Scholar 

  39. Wan Y, McDevitt A, Shen B, Smythe ML, Waters MJ. Increased site 1 affinity improves biopotency of porcine growth hormone. Evidence against diffusion dependent receptor dimerization. J Biol Chem. 2004;279:44775–84. doi:10.1074/jbc.M406092200.

    PubMed  CAS  Google Scholar 

  40. Chen WY, Wight DC, Wagner TE, Kopchick JJ. Expression of a mutated bovine growth hormone gene suppresses growth of transgenic mice. Proc Natl Acad Sci USA. 1990;87:5061–5. doi:10.1073/pnas.87.13.5061.

    PubMed  CAS  Google Scholar 

  41. Chen WY, Wight DC, Mehta BV, Wagner TE, Kopchick JJ. Glycine 119 of bovine growth hormone is critical for growth-promoting activity. Mol Endocrinol. 1991;5:1845–52.

    PubMed  CAS  Google Scholar 

  42. Chen WY, Chen NY, Yun J, Wagner TE, Kopchick JJ. In vitro and in vivo studies of antagonistic effects of human growth hormone analogs. J Biol Chem. 1994;269:15892–7.

    PubMed  CAS  Google Scholar 

  43. Chen WY, Chen NY, Yun J, Wight DC, Wang XZ, Wagner TE, et al. Amino acid residues in the third alpha-helix of growth hormone involved in growth promoting activity. Mol Endocrinol. 1995;9:292–302. doi:10.1210/me.9.3.292.

    PubMed  CAS  Google Scholar 

  44. Zhang Y, Jiang J, Kopchick JJ, Frank SJ. Disulfide linkage of growth hormone (GH) receptors (GHR) reflects GH-induced GHR dimerization. Association of JAK2 with the GHR is enhanced by receptor dimerization. J Biol Chem. 1999;274:33072–84. doi:10.1074/jbc.274.46.33072.

    PubMed  CAS  Google Scholar 

  45. Silva CM, Weber MJ, Thorner MO. Stimulation of tyrosine phosphorylation in human cells by activation of the growth hormone receptor. Endocrinology. 1993;132:101–8. doi:10.1210/en.132.1.101.

    PubMed  CAS  Google Scholar 

  46. Cunningham BC, Wells JA. High-resolution epitope mapping of hGH-receptor interactions by alanine-scanning mutagenesis. Science. 1989;244:1081–5. doi:10.1126/science.2471267.

    PubMed  CAS  Google Scholar 

  47. Ross RJ, Leung KC, Maamra M, Bennett W, Doyle N, Waters MJ, et al. Binding and functional studies with the growth hormone receptor antagonist, B2036-PEG (pegvisomant), reveal effects of pegylation and evidence that it binds to a receptor dimer. J Clin Endocrinol Metab. 2001;86:1716–23. doi:10.1210/jc.86.4.1716.

    PubMed  CAS  Google Scholar 

  48. van Neck JW, Dits NF, Cingel V, Hoppenbrouwers IA, Drop SL, Flyvbjerg A. Dose–response effects of a new growth hormone receptor antagonist (B2036-PEG) on circulating, hepatic and renal expression of the growth hormone/insulin-like growth factor system in adult mice. J Endocrinol. 2000;167:295–303. doi:10.1677/joe.0.1670295.

    PubMed  Google Scholar 

  49. Rosengren L, Simko H, Aryan L, Axelsson-Lendin P, Chmielewska J, Mode A, et al. Antisense and sense RNA probe hybridization to immobilized crude cellular lysates: a tool to screen growth hormone antagonists. J Biomol Screen. 2005;10:260–9. doi:10.1177/1087057104273802.

    PubMed  CAS  Google Scholar 

  50. Rosengren L, Parrow V, Chmielewska J, Mode A, Fholenhag K. In vivo evaluation of a novel, orally bioavailable, small molecule growth hormone receptor antagonist. Growth Horm IGF Res. 2007;17:47–53. doi:10.1016/j.ghir.2006.10.006.

    PubMed  CAS  Google Scholar 

  51. Trainer PJ, Drake WM, Katznelson L, Freda PU, Herman-Bonert V, van der Lely AJ, et al. Treatment of acromegaly with the growth hormone-receptor antagonist pegvisomant. N Engl J Med. 2000;342:1171–7. doi:10.1056/NEJM200004203421604.

    PubMed  CAS  Google Scholar 

  52. van der Lely AJ, Hutson RK, Trainer PJ, Besser GM, Barkan AL, Katznelson L, et al. Long-term treatment of acromegaly with pegvisomant, a growth hormone receptor antagonist. Lancet. 2001;358:1754–9. doi:10.1016/S0140-6736(01)06844-1.

    PubMed  Google Scholar 

  53. Pivonello R, Galderisi M, Auriemma RS, De Martino MC, Galdiero M, Ciccarelli A, et al. Treatment with growth hormone receptor antagonist in acromegaly: effect on cardiac structure and performance. J Clin Endocrinol Metab. 2007;92:476–82. doi:10.1210/jc.2006-1587.

    PubMed  CAS  Google Scholar 

  54. Drake WM, Parkinson C, Akker SA, Monson JP, Besser GM, Trainer PJ. Successful treatment of resistant acromegaly with a growth hormone receptor antagonist. Eur J Endocrinol. 2001;145:451–6. doi:10.1530/eje.0.1450451.

    PubMed  CAS  Google Scholar 

  55. Drake WM, Rowles SV, Roberts ME, Fode FK, Besser GM, Monson JP, et al. Insulin sensitivity and glucose tolerance improve in patients with acromegaly converted from depot octreotide to pegvisomant. Eur J Endocrinol. 2003;149:521–7. doi:10.1530/eje.0.1490521.

    PubMed  CAS  Google Scholar 

  56. Rose DR, Clemmons DR. Growth hormone receptor antagonist improves insulin resistance in acromegaly. Growth Horm IGF Res. 2002;12:418–24. doi:10.1016/S1096-6374(02)00083-7.

    PubMed  CAS  Google Scholar 

  57. Jorgensen JO, Feldt-Rasmussen U, Frystyk J, Chen JW, Kristensen LO, Hagen C, et al. Cotreatment of acromegaly with a somatostatin analog and a growth hormone receptor antagonist. J Clin Endocrinol Metab. 2005;90:5627–31. doi:10.1210/jc.2005-0531.

    PubMed  Google Scholar 

  58. Barkan AL, Burman P, Clemmons DR, Drake WM, Gagel RF, Harris PE, et al. Glucose homeostasis and safety in patients with acromegaly converted from long-acting octreotide to pegvisomant. J Clin Endocrinol Metab. 2005;90:5684–91. doi:10.1210/jc.2005-0331.

    PubMed  CAS  Google Scholar 

  59. Drake WM, Parkinson C, Besser GM, Trainer PJ. Clinical use of a growth hormone receptor antagonist in the treatment of acromegaly. Trends Endocrinol Metab. 2001;12:408–13. doi:10.1016/S1043-2760(01)00461-1.

    PubMed  CAS  Google Scholar 

  60. Flyvbjerg A, Bennett WF, Rasch R, Kopchick JJ, Scarlett JA. Inhibitory effect of a growth hormone receptor antagonist (G120K-PEG) on renal enlargement, glomerular hypertrophy, and urinary albumin excretion in experimental diabetes in mice. Diabetes. 1999;48:377–82. doi:10.2337/diabetes.48.2.377.

    PubMed  CAS  Google Scholar 

  61. Yin D, Vreeland F, Schaaf LJ, Millham R, Duncan BA, Sharma A. Clinical pharmacodynamic effects of the growth hormone receptor antagonist pegvisomant: implications for cancer therapy. Clin Cancer Res. 2007;13:1000–9. doi:10.1158/1078-0432.CCR-06-1910.

    PubMed  CAS  Google Scholar 

  62. McCutcheon IE, Flyvbjerg A, Hill H, Li J, Bennett WF, Scarlett JA, et al. Antitumor activity of the growth hormone receptor antagonist pegvisomant against human meningiomas in nude mice. J Neurosurg. 2001;94:487–92.

    PubMed  CAS  Google Scholar 

  63. Dagnaes-Hansen F, Duan H, Rasmussen LM, Friend KE, Flyvbjerg A. Growth hormone receptor antagonist administration inhibits growth of human colorectal carcinoma in nude mice. Anticancer Res. 2004;24:3735–42.

    PubMed  CAS  Google Scholar 

  64. Divisova J, Kuiatse I, Lazard Z, Weiss H, Vreeland F, Hadsell DL, et al. The growth hormone receptor antagonist pegvisomant blocks both mammary gland development and MCF-7 breast cancer xenograft growth. Breast Cancer Res Treat. 2006;98:315–27. doi:10.1007/s10549-006-9168-1.

    PubMed  CAS  Google Scholar 

  65. Horner JM, Kemp SF, Hintz RL. Growth hormone and somatomedin in insulin-dependent diabetes mellitus. J Clin Endocrinol Metab. 1981;53:1148–53.

    PubMed  CAS  Google Scholar 

  66. Tan K, Baxter RC. Serum insulin-like growth factor I levels in adult diabetic patients: the effect of age. J Clin Endocrinol Metab. 1986;63:651–5.

    PubMed  CAS  Google Scholar 

  67. Vigneri R, Squatrito S, Pezzino V, Filetti S, Branca S, Polosa P. Growth hormone levels in diabetes. Correlation with the clinical control of the disease. Diabetes. 1976;25:167–72. doi:10.2337/diabetes.25.3.167.

    PubMed  CAS  Google Scholar 

  68. Amiel SA, Sherwin RS, Hintz RL, Gertner JM, Press CM, Tamborlane WV. Effect of diabetes and its control on insulin-like growth factors in the young subject with type I diabetes. Diabetes. 1984;33:1175–9. doi:10.2337/diabetes.33.12.1175.

    PubMed  CAS  Google Scholar 

  69. Leung KC, Doyle N, Ballesteros M, Waters MJ, Ho KK. Insulin regulation of human hepatic growth hormone receptors: divergent effects on biosynthesis and surface translocation. J Clin Endocrinol Metab. 2000;85:4712–20. doi:10.1210/jc.85.12.4712.

    PubMed  CAS  Google Scholar 

  70. Baxter RC, Bryson JM, Turtle JR. Somatogenic receptors of rat liver: regulation by insulin. Endocrinology. 1980;107:1176–81.

    PubMed  CAS  Google Scholar 

  71. Menon RK, Stephan DA, Rao RH, Shen-Orr Z, Downs LS Jr, Roberts CT Jr, et al. Tissue-specific regulation of the growth hormone receptor gene in streptozocin-induced diabetes in the rat. J Endocrinol. 1994;142:453–62.

    PubMed  CAS  Google Scholar 

  72. Maes M, Ketelslegers JM, Underwood LE. Low plasma somatomedin-C in streptozotocin-induced diabetes mellitus. Correlation with changes in somatogenic and lactogenic liver binding sites. Diabetes. 1983;32:1060–9. doi:10.2337/diabetes.32.11.1060.

    PubMed  CAS  Google Scholar 

  73. Baumann G. Growth hormone binding protein 2001. J Pediatr Endocrinol Metab. 2001;14:355–75.

    PubMed  CAS  Google Scholar 

  74. Krassas GE. Endocrine abnormalities in anorexia nervosa. Pediatr Endocrinol Rev. 2003;1:46–54.

    PubMed  Google Scholar 

  75. Golden NH, Kreitzer P, Jacobson MS, Chasalow FI, Schebendach J, Freedman SM, et al. Disturbances in growth hormone secretion and action in adolescents with anorexia nervosa. J Pediatr. 1994;125:655–60. doi:10.1016/S0022-3476(94)70030-3.

    PubMed  CAS  Google Scholar 

  76. Ho KY, Veldhuis JD, Johnson ML, Furlanetto R, Evans WS, Alberti KG, et al. Fasting enhances growth hormone secretion and amplifies the complex rhythms of growth hormone secretion in man. J Clin Invest. 1988;81:968–75. doi:10.1172/JCI113450.

    PubMed  CAS  Google Scholar 

  77. Hartman ML, Veldhuis JD, Johnson ML, Lee MM, Alberti KG, Samojlik E, et al. Augmented growth hormone (GH) secretory burst frequency and amplitude mediate enhanced GH secretion during a two-day fast in normal men. J Clin Endocrinol Metab. 1992;74:757–65. doi:10.1210/jc.74.4.757.

    PubMed  CAS  Google Scholar 

  78. Baxter RC, Bryson JM, Turtle JR. The effect of fasting on liver receptors for prolactin and growth hormone. Metabolism. 1981;30:1086–90. doi:10.1016/0026-0495(81)90052-4.

    PubMed  CAS  Google Scholar 

  79. Maes M, Underwood LE, Ketelslegers JM. Low serum somatomedin-C in protein deficiency: relationship with changes in liver somatogenic and lactogenic binding sites. Mol Cell Endocrinol. 1984;37:301–9. doi:10.1016/0303-7207(84)90100-X.

    PubMed  CAS  Google Scholar 

  80. Thissen JP, Triest S, Maes M, Underwood LE, Ketelslegers JM. The decreased plasma concentration of insulin-like growth factor-I in protein-restricted rats is not due to decreased numbers of growth hormone receptors on isolated hepatocytes. J Endocrinol. 1990;124:159–65.

    PubMed  CAS  Google Scholar 

  81. Ohashi S, Kaji H, Abe H, Chihara K. Effect of fasting and growth hormone (GH) administration on GH receptor (GHR) messenger ribonucleic acid (mRNA) and GH-binding protein (GHBP) mRNA levels in male rats. Life Sci. 1995;57:1655–66. doi:10.1016/0024-3205(95)02145-9.

    PubMed  CAS  Google Scholar 

  82. Maccario M, Aimaretti G, Grottoli S, Gauna C, Tassone F, Corneli G, et al. Effects of 36 hour fasting on GH/IGF-I axis and metabolic parameters in patients with simple obesity. Comparison with normal subjects and hypopituitary patients with severe GH deficiency. Int J Obes Relat Metab Disord. 2001;25:1233–9. doi:10.1038/sj.ijo.0801671.

    PubMed  CAS  Google Scholar 

  83. Kratzsch J, Keliner K, Zilkens T, Schmidt-Gayk H, Selisko T, Scholz GH. Growth hormone-binding protein related immunoreactivity is regulated by the degree of insulinopenia in diabetes mellitus. Clin Endocrinol (Oxf). 1996;44:673–8. doi:10.1046/j.1365-2265.1996.672494.x.

    CAS  Google Scholar 

  84. Rasmussen MH, Ho KK, Kjems L, Hilsted J. Serum growth hormone-binding protein in obesity: effect of a short-term, very low calorie diet and diet-induced weight loss. J Clin Endocrinol Metab. 1996;81:1519–24. doi:10.1210/jc.81.4.1519.

    PubMed  CAS  Google Scholar 

  85. Frystyk J, Skjaerbaek C, Vestbo E, Fisker S, Orskov H. Circulating levels of free insulin-like growth factors in obese subjects: the impact of type 2 diabetes. Diabetes Metab Res Rev. 1999;15:314–22. doi:10.1002/(SICI)1520-7560(199909/10)15:5<314::AID-DMRR56>3.0.CO;2-E.

    PubMed  CAS  Google Scholar 

  86. Ji S, Guan R, Frank SJ, Messina JL. Insulin inhibits growth hormone signaling via the growth hormone receptor/JAK2/STAT5B pathway. J Biol Chem. 1999;274:13434–42. doi:10.1074/jbc.274.19.13434.

    PubMed  CAS  Google Scholar 

  87. Bennett WL, Keeton AB, Ji S, Xu J, Messina JL. Insulin regulation of growth hormone receptor gene expression: involvement of both the PI-3 kinase and MEK/ERK signaling pathways. Endocrine. 2007;32:219–26. doi:10.1007/s12020-007-9021-2.

    PubMed  CAS  Google Scholar 

  88. Xu J, Keeton AB, Franklin JL, Li X, Venable DY, Frank SJ, et al. Insulin enhances growth hormone induction of the MEK/ERK signaling pathway. J Biol Chem. 2006;281:982–92. doi:10.1074/jbc.M505484200.

    PubMed  CAS  Google Scholar 

  89. Cabello G, Wrutniak C. Thyroid hormone and growth: relationships with growth hormone effects and regulation. Reprod Nutr Dev. 1989;29:387–402. doi:10.1051/rnd:19890401.

    PubMed  CAS  Google Scholar 

  90. Burstein PJ, Draznin B, Johnson CJ, Schalch DS. The effect of hypothyroidism on growth, serum growth hormone, the growth hormone-dependent somatomedin, insulin-like growth factor, and its carrier protein in rats. Endocrinology. 1979;104:1107–11.

    Article  PubMed  CAS  Google Scholar 

  91. Mullis PE, Eble A, Marti U, Burgi U, Postel-Vinay MC. Regulation of human growth hormone receptor gene transcription by triiodothyronine (T3). Mol Cell Endocrinol. 1999;147:17–25. doi:10.1016/S0303-7207(98)00232-9.

    PubMed  CAS  Google Scholar 

  92. Tsukada A, Ohkubo T, Sakaguchi K, Tanaka M, Nakashima K, Hayashida Y, et al. Thyroid hormones are involved in insulin-like growth factor-I (IGF-I) production by stimulating hepatic growth hormone receptor (GHR) gene expression in the chicken. Growth Horm IGF Res. 1998;8:235–42. doi:10.1016/S1096-6374(98)80116-0.

    PubMed  CAS  Google Scholar 

  93. Hochberg Z, Bick T, Harel Z. Alterations of human growth hormone binding by rat liver membranes during hypo- and hyperthyroidism. Endocrinology. 1990;126:325–9.

    PubMed  CAS  Google Scholar 

  94. Nanto-Salonen K, Muller HL, Hoffman AR, Vu TH, Rosenfeld RG. Mechanisms of thyroid hormone action on the insulin-like growth factor system: all thyroid hormone effects are not growth hormone mediated. Endocrinology. 1993;132:781–8. doi:10.1210/en.132.2.781.

    PubMed  CAS  Google Scholar 

  95. Miell JP, Taylor AM, Zini M, Maheshwari HG, Ross RJ, Valcavi R. Effects of hypothyroidism and hyperthyroidism on insulin-like growth factors (IGFs) and growth hormone- and IGF-binding proteins. J Clin Endocrinol Metab. 1993;76:950–5. doi:10.1210/jc.76.4.950.

    PubMed  CAS  Google Scholar 

  96. Amit T, Hertz P, Ish-Shalom S, Lotan R, Luboshitzki R, Youdim MB, et al. Effects of hypo or hyper-thyroidism on growth hormone-binding protein. Clin Endocrinol (Oxf). 1991;35:159–62. doi:10.1111/j.1365-2265.1991.tb03515.x.

    CAS  Google Scholar 

  97. Schaufele F, West BL, Baxter JD. Synergistic activation of the rat growth hormone promoter by Pit-1 and the thyroid hormone receptor. Mol Endocrinol. 1992;6:656–65. doi:10.1210/me.6.4.656.

    PubMed  CAS  Google Scholar 

  98. Iwasaki Y, Morishita M, Asai M, Onishi A, Yoshida M, Oiso Y, et al. Effects of hormones targeting nuclear receptors on transcriptional regulation of the growth hormone gene in the MtT/S rat somatotrope cell line. Neuroendocrinology. 2004;79:229–36. doi:10.1159/000078787.

    PubMed  CAS  Google Scholar 

  99. Garcia-Villalba P, Au-Fliegner M, Samuels HH, Aranda A. Interaction of thyroid hormone and retinoic acid receptors on the regulation of the rat growth hormone gene promoter. Biochem Biophys Res Commun. 1993;191:580–6. doi:10.1006/bbrc.1993.1257.

    PubMed  CAS  Google Scholar 

  100. Sap J, de Magistris L, Stunnenberg H, Vennstrom B. A major thyroid hormone response element in the third intron of the rat growth hormone gene. EMBO J. 1990;9:887–96.

    PubMed  CAS  Google Scholar 

  101. Samuels MH, Wierman ME, Wang C, Ridgway EC. The effect of altered thyroid status on pituitary hormone messenger ribonucleic acid concentrations in the rat. Endocrinology. 1989;124:2277–82.

    PubMed  CAS  Google Scholar 

  102. Crew MD, Spindler SR. Thyroid hormone regulation of the transfected rat growth hormone promoter. J Biol Chem. 1986;261:5018–22.

    PubMed  CAS  Google Scholar 

  103. Ezzat S, Laks D, Oster J, Melmed S. Growth hormone regulation in primary fetal and neonatal rat pituitary cell cultures: the role of thyroid hormone. Endocrinology. 1991;128:937–43.

    PubMed  CAS  Google Scholar 

  104. Burman P, Johansson AG, Siegbahn A, Vessby B, Karlsson FA. Growth hormone (GH)-deficient men are more responsive to GH replacement therapy than women. J Clin Endocrinol Metab. 1997;82:550–5. doi:10.1210/jc.82.2.550.

    PubMed  CAS  Google Scholar 

  105. Nugent AG, Leung KC, Sullivan D, Reutens AT, Ho KK. Modulation by progestogens of the effects of oestrogen on hepatic endocrine function in postmenopausal women. Clin Endocrinol (Oxf). 2003;59:690–8. doi:10.1046/j.1365-2265.2003.01907.x.

    CAS  Google Scholar 

  106. O’Sullivan AJ, Crampton LJ, Freund J, Ho KK. The route of estrogen replacement therapy confers divergent effects on substrate oxidation and body composition in postmenopausal women. J Clin Invest. 1998;102:1035–40. doi:10.1172/JCI2773.

    PubMed  Google Scholar 

  107. Wolthers T, Hoffman DM, Nugent AG, Duncan MW, Umpleby M, Ho KK. Oral estrogen antagonizes the metabolic actions of growth hormone in growth hormone-deficient women. Am J Physiol Endocrinol Metab. 2001;281:E1191–6.

    PubMed  CAS  Google Scholar 

  108. Yu YM, Domene HM, Sztein J, Counts DR, Cassorla F. Developmental changes and differential regulation by testosterone and estradiol of growth hormone receptor expression in the rabbit. Eur J Endocrinol. 1996;135:583–90.

    Article  PubMed  CAS  Google Scholar 

  109. Domene HM, Marin G, Sztein J, Yu YM, Baron J, Cassorla FG. Estradiol inhibits growth hormone receptor gene expression in rabbit liver. Mol Cell Endocrinol. 1994;103:81–7. doi:10.1016/0303-7207(94)90072-8.

    PubMed  CAS  Google Scholar 

  110. Contreras B, Talamantes F. Growth hormone (GH) and 17beta-estradiol regulation of the expression of mouse GH receptor and GH-binding protein in cultured mouse hepatocytes. Endocrinology. 1999;140:4725–31. doi:10.1210/en.140.10.4725.

    PubMed  CAS  Google Scholar 

  111. Carmignac DF, Gabrielsson BG, Robinson IC. Growth hormone binding protein in the rat: effects of gonadal steroids. Endocrinology. 1993;133:2445–52. doi:10.1210/en.133.6.2445.

    PubMed  CAS  Google Scholar 

  112. Gabrielsson BG, Carmignac DF, Flavell DM, Robinson IC. Steroid regulation of growth hormone (GH) receptor and GH-binding protein messenger ribonucleic acids in the rat. Endocrinology. 1995;136:209–17. doi:10.1210/en.136.1.209.

    PubMed  CAS  Google Scholar 

  113. Slootweg MC, Swolin D, Netelenbos JC, Isaksson OG, Ohlsson C. Estrogen enhances growth hormone receptor expression and growth hormone action in rat osteosarcoma cells and human osteoblast-like cells. J Endocrinol. 1997;155:159–64. doi:10.1677/joe.0.1550159.

    PubMed  CAS  Google Scholar 

  114. Leung KC, Doyle N, Ballesteros M, Sjogren K, Watts CK, Low TH, et al. Estrogen inhibits GH signaling by suppressing GH-induced JAK2 phosphorylation, an effect mediated by SOCS-2. Proc Natl Acad Sci USA. 2003;100:1016–21. doi:10.1073/pnas.0337600100.

    PubMed  CAS  Google Scholar 

  115. Yang S, Xu X, Bjorntorp P, Eden S. Additive effects of growth hormone and testosterone on lipolysis in adipocytes of hypophysectomized rats. J Endocrinol. 1995;147:147–52.

    Article  PubMed  CAS  Google Scholar 

  116. Saggese G, Cesaretti G, Franchi G, Startari L. Testosterone-induced increase of insulin-like growth factor I levels depends upon normal levels of growth hormone. Eur J Endocrinol. 1996;135:211–5.

    PubMed  CAS  Google Scholar 

  117. Mauras N. Growth hormone and sex steroids. Interactions in puberty. Endocrinol Metab Clin North Am. 2001;30:529–44. doi:10.1016/S0889-8529(05)70200-0.

    PubMed  CAS  Google Scholar 

  118. Mauras N, Rini A, Welch S, Sager B, Murphy SP. Synergistic effects of testosterone and growth hormone on protein metabolism and body composition in prepubertal boys. Metabolism. 2003;52:964–9. doi:10.1016/S0026-0495(03)00163-X.

    PubMed  CAS  Google Scholar 

  119. Gibney J, Wolthers T, Johannsson G, Umpleby AM, Ho KK. Growth hormone and testosterone interact positively to enhance protein and energy metabolism in hypopituitary men. Am J Physiol Endocrinol Metab. 2005;289:E266–71. doi:10.1152/ajpendo.00483.2004.

    PubMed  CAS  Google Scholar 

  120. Meinhardt UJ, Ho KK. Modulation of growth hormone action by sex steroids. Clin Endocrinol (Oxf). 2006;65:413–22. doi:10.1111/j.1365-2265.2006.02676.x.

    CAS  Google Scholar 

  121. Bondanelli M, Ambrosio MR, Margutti A, Franceschetti P, Zatelli MC, degli Uberti EC. Activation of the somatotropic axis by testosterone in adult men: evidence for a role of hypothalamic growth hormone-releasing hormone. Neuroendocrinology. 2003;77:380–7. doi:10.1159/000071310.

    PubMed  CAS  Google Scholar 

  122. Keenan BS, Richards GE, Mercado M, Dallas JS, Eakman GD, Baumann G. Androgen regulation of growth hormone binding protein. Metabolism. 1996;45:1521–6. doi:10.1016/S0026-0495(96)90182-1.

    PubMed  CAS  Google Scholar 

  123. Zung A, Phillip M, Chalew SA, Palese T, Kowarski AA, Zadik Z. Testosterone effect on growth and growth mediators of the GH-IGF-I axis in the liver and epiphyseal growth plate of juvenile rats. J Mol Endocrinol. 1999;23:209–21. doi:10.1677/jme.0.0230209.

    PubMed  CAS  Google Scholar 

  124. Keenan BS, Richards GE, Ponder SW, Dallas JS, Nagamani M, Smith ER. Androgen-stimulated pubertal growth: the effects of testosterone and dihydrotestosterone on growth hormone and insulin-like growth factor-I in the treatment of short stature and delayed puberty. J Clin Endocrinol Metab. 1993;76:996–1001. doi:10.1210/jc.76.4.996.

    PubMed  CAS  Google Scholar 

  125. Ip TP, Hoffman DM, O’Sullivan AJ, Leung KC, Ho KK. Do androgens regulate growth hormone-binding protein in adult man? J Clin Endocrinol Metab. 1995;80:1278–82. doi:10.1210/jc.80.4.1278.

    PubMed  CAS  Google Scholar 

  126. Johannsson G, Gibney J, Wolthers T, Leung KC, Ho KK. Independent and combined effects of testosterone and growth hormone on extracellular water in hypopituitary men. J Clin Endocrinol Metab. 2005;90:3989–94. doi:10.1210/jc.2005-0553.

    PubMed  CAS  Google Scholar 

  127. Tan SH, Dagvadorj A, Shen F, Gu L, Liao Z, Abdulghani J, et al. Transcription factor Stat5 synergizes with androgen receptor in prostate cancer cells. Cancer Res. 2008;68:236–48. doi:10.1158/0008-5472.CAN-07-2972.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Dr. Birzniece is supported by the NHMRC of Australia. Dr. Sata is a visiting fellow from Tokyo Women’s Medical University, Japan and is supported by a Post Doctoral Endeavour Fellowship, Department of Education, Employment and Workplace Relations, Australia.

Disclosure information

The authors have nothing to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken KY Ho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Birzniece, V., Sata, A. & Ho, K.K. Growth hormone receptor modulators. Rev Endocr Metab Disord 10, 145–156 (2009). https://doi.org/10.1007/s11154-008-9089-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-008-9089-x

Keywords

Navigation