Skip to main content
Log in

Nomenclature for membrane-bound light-harvesting complexes of cyanobacteria

  • Mini review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Accessory chlorophyll-binding proteins (CBP) in cyanobacteria have six transmembrane helices and about 11 conserved His residues that might participate in chlorophyll binding. In various species of cyanobacteria, the CBP proteins bind different types of chlorophylls, including chlorophylls a, b, d and divinyl-chlorophyll a, b. The CBP proteins do not belong to the light-harvesting complexes (LHC) superfamily of plant and algae. The proposed new name of CBP for this class of proteins, which is a unique accessory light-harvesting superfamily in cyanobacteria, clarifies the confusion of names of prochlorophytes chlorophyll binding protein (Pcb), PSII-like light-harvesting proteins and iron-stress-induced protein A (IsiA). The CBP complexes are a member of a larger family that includes the chlorophyll a-binding proteins CP43 and CP47 that function as core antennas of photosystem II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CBP:

Accessory chlorophyll-binding proteins

CP43/CP47:

Core antenna of reaction center II

dCBP:

Accessory divinylchlorophyll binding proteins

IsiA:

Iron-stress-induced protein A

PBS:

Phycobilisomes

Pcb:

Prochlorophyte chlorophyll-binding protein complexes

PS:

Photosystem

RC:

Reaction center

References

  • Bibby TS, Nield J, Barber J (2001a) Iron deficiency induces the formation of an antenna ring around trimeric Photosystem I in cyanobacteria. Nature 412:743–745

    Article  PubMed  CAS  Google Scholar 

  • Bibby TS, Nield J, Partensky F, Barber J (2001b) Oxyphotobacteria antenna ring around Photosystem I. Nature 413:590

    Article  PubMed  CAS  Google Scholar 

  • Bibby TS, Mary I, Nield J, Partensky F, Barber J (2003a) Low-lightadapted Prochlorococcus species possess specific antennae for each photosystem. Nature 424:1051–1054

    Article  PubMed  CAS  Google Scholar 

  • Bibby TS, Nield J, Chen M, Larkum AWD, Barber J (2003b) Structure of a Photosystem II supercomplex isolated from Prochloron didemni retaining its chlorophyll a/b light-harvesting system. Proc Natl Acad Sci USA 100:9050–9054

    Article  PubMed  CAS  Google Scholar 

  • Blankenship RE (2002) Molecular mechanisms of photosynthesis. Blackwell Science, Oxford, UK

    Google Scholar 

  • Boekema EJ, Hifney A, Yakushevska AE, Piotrowski M, Keegstra W, Berry S, Michel KP, Pistorius EK, Kruip J (2001) A giant chlorophyll-protein complex induced by iron deficiency in cyanobacteria. Nature 412:745–748

    Article  PubMed  CAS  Google Scholar 

  • Boichenko VA, Pinevich AV, Stadnichuk IN (2007) Association of chlorophyll a/b-binding Pcb proteins with photosystems I and II in Prochlorothrix hollandica. Biochim Biophys Acta Bioenerg 1767:801–806

    Article  CAS  Google Scholar 

  • Bumba L, Prasil O, Vacha F (2005) Antenna ring around trimeric Photosystem I in chlorophyll b containing cyanobacterium Prochlorothrix hollandica. Biochim Biophys Acta Bioenerg 1708:15

    Article  CAS  Google Scholar 

  • Burmap RL, Troyan T, Sherman LA (1993) The highly abundant chlorophyll-protein of iron-deficient Synechococcus sp. PCC 7942 (CP43′) is encoded by the isiA gene. Plant Physiol 103:893–902

    Article  Google Scholar 

  • Chen M, Bibby TS (2005) Photosynthetic apparatus of antenna-reaction centres supercomplexes in oxyphotobacteria: insight through significance of Pcb/IsiA proteins. Photosynth Res 86:165–173

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Quinnell RG, Larkum AWD (2002) The major light-harvesting pigment protein of Acaryochloris marina. FEBS Lett 514:149–152

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Bibby TS, Nield J, Larkum AWD, Barber J (2005a) Structure of a large photosystem II supercomplex from Acaryochloris marina. FEBS Lett 579:1306–1310

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Bibby TS, Nield J, Larkum AWD, Barber J (2005b) Iron deficiency induces a chlorophyll d-binding Pcb antenna system around Photosystem I in Acaryochloris marina. Biochim Biophys Acta 1708:367–374

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Hiller RG, Howe CJ, Larkum AWD (2005c) Unique origin and lateral transfer of prokaryotic chlorophyll-b and chlorophyll-d light-harvesting systems. Mol Biol Evol 22:21–28

    Article  PubMed  CAS  Google Scholar 

  • Cogdell RJ, Gall A, Kohler J (2006) The architecture and function of the light-harvesting apparatus of purple bacteria: from single molecules to in vivo membranes. Q Rev Biophys 39:227–324

    Article  PubMed  CAS  Google Scholar 

  • Dayhoff MO, Schwartz RM, Orcutt BC (1978) A model of evolutionary change in proteins. In: Dayhoff MO (ed) Atlas of protein sequence and structure, vol 5. National Biomedical Research Foundation, Washington, DC, pp 345–352

  • Dufresne A, Garczarek L, Partensky F (2005) Accelerated evolution associated with genome reduction in a free-living prokaryote. Genome Biol 6:R14 (10 pp)

    Google Scholar 

  • Durnford DG (2003) Structure and regulation of algal light-harvesting complex genes. In: Larkum AWD, Douglas SE, Raven JA (eds) Photosynthesis in algae. Kluwer Academic Publishers, Dordrecht, pp 63–82

    Google Scholar 

  • Durnford DG, Deane JA, Tan S, McFadden GI, Gantt E, Green BR (1999) A phylogenetic assessment of the eukaryotic light-harvesting antenna proteins, with implications for plastid evolution. J Mol Evol 48:59–68

    Article  PubMed  CAS  Google Scholar 

  • Eaton-Rye JJ, Putnam-Evans C (2005) The CP47 and CP43 core antenna components. In: Wydryzynski TJ, Satoh K (eds) Photosystem II the light-driven water: plastoquinone oxidoreducase. Springer, Heidelberg, pp 45–70

    Google Scholar 

  • Garczarek L, Hess WR, Holtzendorff J, van der Staay GWM, Partensky F (2000) Multiplication of antenna genes as a major adaptation to low light in a marine prokaryote. Proc Natl Acad Sci USA 97:4098–4101

    Article  PubMed  CAS  Google Scholar 

  • Garczarek L, van der Staay GWM, Hess WR, Le Gall F, Partensky F (2001) Expression and phylogeny of the multiple antenna genes of the low-light-adapted strain Prochlorococcus marinus SS120 (Oxyphotobacteria). Plant Mol Biol 46:683–693

    Article  PubMed  CAS  Google Scholar 

  • Geiss U, Vinnemeier J, Schoor A, Hagemann M (2001) The iron-regulated isiA gene of Fischerella muscicola strain PCC 73103 is linked to a likewise regulated gene encoding a Pcb-like chlorophyll-binding protein. FEMS Microbiol Lett 197:123–129

    Article  PubMed  CAS  Google Scholar 

  • Green BR, Parson WW (eds) (2003) Light-harvesting antennas in photosynthesis. Springer, Heidelberg

    Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Havaux M, Guedeney G, Hagemann M, Yeremenko N, Matthijs HCP, Jeanjean R (2005) The chlorophyll-binding protein IsiA is inducible by high light and protects the cyanobacterium Synechocystis PCC6803 from photooxidative stress. FEBS Lett 579:2289–2293

    Article  PubMed  CAS  Google Scholar 

  • Kojima K, Suzuki-Maenaka T, Kikuchi T, Nakamoto H (2006) Roles of the cyanobacterial isiABC operon in protection from oxidative and heat stresses. Physiol Plant 128:507–519

    Article  CAS  Google Scholar 

  • Krogh AB, Larsson van Heijne G. Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    Article  PubMed  CAS  Google Scholar 

  • La Roche J, van der Staay GWM, Partensky F, Ducret A, Aebersold R, Li R, Golden SS, Hiller RG, Wrench PM, Larkum AWD, Green BR (1996) Independent evolution of the prochlorophyte and green plant chlorophyll a/b light-harvesting proteins. Proc Natl Acad Sci USA 93:15244–15248

    Article  PubMed  Google Scholar 

  • Lewin RA (2002) Prochlorophyta: a matter of class distinctions. Photosynth Res 73:59–61

    Article  PubMed  CAS  Google Scholar 

  • Liu ZF, Yan HC, Wang KB, Kuang TY, Zhang JP, Gui LL, An XM, Chang WR (2004) Crystal structure of spinach major light-harvesting complex at 2.72 angstrom resolution. Nature 428:287–292

    Article  PubMed  CAS  Google Scholar 

  • Melkozernov AN, Barber J, Blankenship RE (2006) Light harvesting in photosystem I supercomplexes. Biochemistry 45:331–345

    Article  PubMed  CAS  Google Scholar 

  • Nelson N, Ben-Shem A (2004) The complex architecture of oxygenic photosynthesis. Nat Rev Mol Cell Biol 5:971–982

    Article  PubMed  CAS  Google Scholar 

  • Partensky F, Garczarek L (2003) The photosynthetic apparatus of chlorophyll b- and d-containing oxyphotobacteria. In: Larkum AWD, Douglas SE, Raven JA (eds) Photosynthesis in algae. Kluwer Academic Publishers, Dordrecht, pp 29–62

    Google Scholar 

  • Post AF, Bullerjahn GS (1994) The photosynthetic machinery in Prochlorophytes: structural properties and ecological significance. FEMS Microbiol Rev 13:393–414

    Article  CAS  Google Scholar 

  • Pugalenthi GK, Shameer K, Srinivasan N, Sowdhamini R (2006) Harmony: a server for the assessment of protein structures. Nucleic Acids Res 34:W231–W234

    Article  PubMed  CAS  Google Scholar 

  • Schubert WD, Klukas O, Saenger W, Witt HT, Fromme P, Krauss N (1998) A common ancestor for oxygenic and anoxygenic photosynthetic systems: a comparison based on the structural model of photosystem I. J Mol Biol 280:297–314

    Article  PubMed  CAS  Google Scholar 

  • Schwede TJ, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385

    Article  PubMed  CAS  Google Scholar 

  • van der Staay GWM, Yurkova N, Green BR (1998) The 38 kDa chlorophyll a/b protein of the prokaryote Prochlorothrix hollandica is encoded by a divergent pcb gene. Plant Mol Biol 36:709–716

    Article  PubMed  Google Scholar 

  • Tamura KJ, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Ting CS, Rocap G, King J, Chisholm SW (2002) Cyanobacterial photosynthesis in the oceans: the origins and significance of divergent light-harvesting strategies. Trends Microbiol 10:134–142

    Article  PubMed  CAS  Google Scholar 

  • Van Thor JJ, Mullineaux CW, Matthijs HCP, Hellingwerf KJ (1998) Light harvesting and state transitions in cyanobacteria. Bot Acta 111:430–443

    Google Scholar 

  • Whelan S, Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18:691–699

    PubMed  CAS  Google Scholar 

  • Yang ZH (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–556

    PubMed  CAS  Google Scholar 

  • Yang ZN, Goldman N, Friday A (1994) Comparison of models for nucleotide substitution used in maximum-likelihood phylogenetic estimation. Mol Biol Evol 11:316–324

    PubMed  CAS  Google Scholar 

  • Yeremenko N, Kouril R, Ihalainen JA, D’Haene S, van Oosterwijk N, Andrizhiyevskaya EG, Keegstra W, Dekker HL, Hagemann M, Boekema EJ, Matthijs HCP, Dekker JP (2004) Supramolecular organization and dual function of the IsiA chlorophyll-binding protein in cyanobacteria. Biochemistry 43:10308–10313

    Article  PubMed  CAS  Google Scholar 

  • Yousef N, Pistorius EK, Michel KP (2003) Comparative analysis of idiA and isiA transcription under iron starvation and oxidative stress in Synechococcus elongatus PCC 7942 wild-type and selected mutants. Arch Microbiol 180:471–483

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

MC is supported by a University of Sydney research fellowship and thanks the Australia Research Council for financial support. This work has been supported in part by US DOE Grant No. DE-FG02-04ER15550 to REB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, M., Zhang, Y. & Blankenship, R.E. Nomenclature for membrane-bound light-harvesting complexes of cyanobacteria. Photosynth Res 95, 147–154 (2008). https://doi.org/10.1007/s11120-007-9255-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-007-9255-0

Keywords

Navigation